(本題14分)
設(shè)函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍.
(Ⅰ)函數(shù)的單調(diào)遞增區(qū)間為.(Ⅱ).
解析試題分析:(1)確定出函數(shù)的定義域是解決本題的關(guān)鍵,利用導(dǎo)數(shù)作為工具,求出該函數(shù)的單調(diào)遞增區(qū)間即為f'(x)>0的x的取值區(qū)間;
(2)方法一:利用函數(shù)思想進(jìn)行方程根的判定問(wèn)題是解決本題的關(guān)鍵.構(gòu)造函數(shù),研究構(gòu)造函數(shù)的性質(zhì)尤其是單調(diào)性,列出該方程有兩個(gè)相異的實(shí)根的不等式組,求出實(shí)數(shù)a的取值范圍.
方法二:先分離變量再構(gòu)造函數(shù),利用函數(shù)的導(dǎo)數(shù)為工具研究構(gòu)造函數(shù)的單調(diào)性,根據(jù)題意列出關(guān)于實(shí)數(shù)a的不等式組進(jìn)行求解.
解:(Ⅰ)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7e/d/kzvxl2.png" style="vertical-align:middle;" />,………………………1分
∵,………………………2分
∵,則使的的取值范圍為,
故函數(shù)的單調(diào)遞增區(qū)間為. …………………………4分
(Ⅱ)方法1:∵,
∴.…………………6分
令,
∵,且,
由.
∴在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間內(nèi)單調(diào)遞增,……………………9分
故在區(qū)間內(nèi)恰有兩個(gè)相異實(shí)根……11分
即解得:.
綜上所述,的取值范圍是.………………13分
方法2:∵,
∴.………………6分
即,
令, ∵,且,
由.
∴在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間內(nèi)單調(diào)遞減.………9分
∵,,,
又,故在區(qū)間內(nèi)恰有兩個(gè)相異實(shí)根.……11分
即.
綜上所述,的取值范圍是. …………………14分
考點(diǎn):本試題主要考查了導(dǎo)數(shù)的工具作用,考查學(xué)生利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的知識(shí).考查學(xué)生對(duì)方程、函數(shù)、不等式的綜合問(wèn)題的轉(zhuǎn)化與化歸思想,將方程的根的問(wèn)題轉(zhuǎn)化為函數(shù)的圖象交點(diǎn)問(wèn)題,屬于綜合題型
點(diǎn)評(píng):解決該試題的關(guān)鍵將方程的根的問(wèn)題轉(zhuǎn)化為函數(shù)的圖象交點(diǎn)問(wèn)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分) 已知為實(shí)數(shù),,
(Ⅰ)若a=2,求的單調(diào)遞增區(qū)間;
(Ⅱ)若,求在[-2,2] 上的最大值和最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
已知函數(shù).
(Ⅰ) 求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)的圖像在點(diǎn)處的切線的傾斜角為,問(wèn):在什么范圍取值時(shí),對(duì)于任意的,函數(shù)g(x)=x3 +x2在區(qū)間上總存在極值?
(Ⅲ)當(dāng)時(shí),設(shè)函數(shù),若在區(qū)間上至少存在一個(gè),
使得成立,試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
設(shè)函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),.
①時(shí),求的單調(diào)區(qū)間;
②若時(shí),函數(shù)的圖象總在函數(shù)的圖象的上方,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)設(shè)
(1)若在上遞增,求的取值范圍;
(2)若在上的存在單調(diào)遞減區(qū)間 ,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)設(shè),.
(1)求在上的值域;
(2)若對(duì)于任意,總存在,使得成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com