已知F1,F(xiàn)2為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點.
(Ⅰ)若點P為雙曲線與圓x2+y2=a2+b2的一個交點,且滿足|PF1|=2|PF2|,求此雙曲線的離心率;
(Ⅱ)設雙曲線的漸近線方程為y=±x,F(xiàn)2到漸近線的距離是
2
,過F2的直線交雙曲線于A,B兩點,且以AB為直徑的圓與y軸相切,求線段AB的長.
(Ⅰ)由題設得:
|PF1|=2|PF2|
|PF1|-|PF2|=2a
,得|PF1|=4a,|PF2|=2a,
因為點P為雙曲線與圓x2+y2=a2+b2=c2的一個交點,∴PF1⊥PF2
|PF1|2+|PF2|2=|F1F2|2,則16a2+4a2=4c2,即5a2=c2,故離心率e=
c
a
=
5
;
(Ⅱ)∵雙曲線的漸近線方程為y=±x,F(xiàn)2到漸近線的距離是
2
,
c
2
=
2
,所以c=2,又
b
a
=1
,a2+b2=c2,得a=b=
2

所以雙曲線方程為x2-y2=2,F(xiàn)2(2,0),e=
2

設A(x1,y1),B(x2,y2),由雙曲線的焦半徑公式得:|AF2|=ex1-a=
2
x1-
2
,
|BF2|=ex2-a=
2
x2-
2
,
∵以AB為直徑的圓與y軸相切,∴
x1+x2
2
=
1
2
|AB|=
1
2
(|AF2|+|BF2|)

x1+x2=
2
(x1+x2)-2
2
,則x1+x2=
2
2
2
-1
=4+2
2
,
所以|AB|=x1+x2=4+2
2
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓M:
y2
a2
+
x2
b2
=1
(a>b>0)經過點P(1,
2
)
,其離心率e=
2
2

(Ⅰ)求橢圓M的方程;
(Ⅱ)直線l:y=
2
x+m
交橢圓于A、B兩點,且△PAB的面積為
2
,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓E的中心在原點O,焦點在x軸上,離心率e=
2
3
,過點C(-1,0)的直線l交橢圓于A、B兩點,且滿足:
CA
BC
(λ≥2).
(1)若λ為常數(shù),試用直線l的斜率k(k≠0)表示三角形OAB的面積;
(2)若λ為常數(shù),當三角形OAB的面積取得最大值時,求橢圓E的方程;
(3)若λ變化,且λ=k2+1,試問:實數(shù)λ和直線l的斜率k(k∈R)分別為何值時,橢圓E的短半軸長取得最大值?并求出此時的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點A(1,1)是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上一點,F(xiàn)1,F(xiàn)2是橢圓的兩焦點,且滿足|AF1|+|AF2|=4.
(I)求橢圓的標準方程;
(II)求過A(1,1)與橢圓相切的直線方程;
(III)設點C、D是橢圓上兩點,直線AC、AD的傾斜角互補,試判斷直線CD的斜率是否為定值?若是定值,求出定值;若不是定值,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C過點P(1,
3
2
),兩個焦點分別為F1(-1,0),F(xiàn)2(1,0).
(1)求橢圓C的方程;
(2)過點F1的直線交橢圓于A、B兩點,求線段AB的中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓Γ:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,且橢圓Γ的右焦點F與拋物線y2=4x的焦點重合.
(Ⅰ)求橢圓Γ的標準方程;
(Ⅱ)過左焦點F的直線l與橢圓交于A,B兩點,是否存在直線l,使得OA⊥OB,O為坐標原點,若存在,求出l的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線L:
x
4
+
y
3
=1與橢圓E:
x2
16
+
y2
9
=1相交于A,B兩點,該橢圓上存在點P,使得△PAB的面積等于3,則這樣的點P共有(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

直線y=x+m與曲線y=
1-2x2
有兩個交點,則實數(shù)m的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,以
3
2
為離心率的橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左右頂點分別為A和B,點P是橢圓位于x軸上方的一點,且△PAB的面積最大值為2.
(Ⅰ)求橢圓方程;
(Ⅱ)設點Q是橢圓位于x軸下方的一點,直線AP、BQ的斜率分別為k1,k2,若k1=7k2,設△BPQ與△APQ的面積分別為S1,S2,求S1-S2的最大值.

查看答案和解析>>

同步練習冊答案