(2013•閘北區(qū)二模)設(shè)y=f(x)為R上的奇函數(shù),y=g(x)為R上的偶函數(shù),且g(x)=f(x+1),g(0)=2.則f(x)=
2sin
π
2
x
2sin
π
2
x
.(只需寫(xiě)出一個(gè)滿足條件的函數(shù)解析式即可)
分析:根據(jù)f(x)、g(x)的奇偶性可推出f(x)的周期,由f(x)的周期性、奇偶性即可找到滿足條件的一個(gè)函數(shù).
解答:解:因?yàn)閒(x)是奇函數(shù),g(x)是偶函數(shù),
所以f(x+1)=g(x)=g(-x)=f(-x+1)=-f(x-1),
所以f(x+1)=-f(x-1),
令t=x+1,則x=t-1,所以f(t)=-f(t-2)=f(t-4),
所以f(x)是一個(gè)周期為4的周期函數(shù),同時(shí)為奇函數(shù),
f(x)=2sin
π
2
x
滿足條件,
故答案為:2sin
π
2
x
點(diǎn)評(píng):本題考查函數(shù)的奇偶性、周期性及函數(shù)解析式的求解,屬中檔題,解決本題的關(guān)鍵是運(yùn)用函數(shù)的奇偶性推出函數(shù)f(x)的周期.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•閘北區(qū)二模)設(shè)為虛數(shù)單位,集合A={1,-1,i,-i},集合B={i10,1-i4,(1+i)(1-i),
1+i1-i
}
,則A∩B=
{-1,i}
{-1,i}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•閘北區(qū)二模)在平面直角坐標(biāo)系xOy中,以向量
a
=(a1,a2),
b
=(b1,b2)為鄰邊的平行四邊形的面積為
|a1b2-b1a2|
|a1b2-b1a2|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•閘北區(qū)二模)(1+2x)3(1-x)4展開(kāi)式中x6的系數(shù)為
-20
-20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•閘北區(qū)二模)過(guò)原點(diǎn)且與向量
n
=(cos(-
π
6
),sin(-
π
6
))
垂直的直線被圓x2+y2-4y=0所截得的弦長(zhǎng)為
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•閘北區(qū)二模)設(shè)0<θ<
π
2
,a1=2cosθ,an+1=
2+an
,則數(shù)列{an}的通項(xiàng)公式an=
2cos
θ
2n-1
2cos
θ
2n-1

查看答案和解析>>

同步練習(xí)冊(cè)答案