已知函數(shù),,()
(1)當(dāng) ≤≤時,求的最大值;
(2)若對任意的,總存在,使成立,求實數(shù)的取值范圍;
(3)問取何值時,方程在上有兩解?
(1)當(dāng)時,;(2)或;(3)或。
【解析】
試題分析:(1)
設(shè),則
∴
∴當(dāng)時,
(2)當(dāng) ∴值域為
當(dāng)時,則
有
①當(dāng)時,值域為
②當(dāng)時,值域為
而依據(jù)題意有的值域是值域的子集
則 或
∴或
(3)化為
在上有兩解,
令 則t∈
在上解的情況如下:
①當(dāng)在上只有一個解或相等解,
有兩解或
∴或
②當(dāng)時,有惟一解
③當(dāng)時,有惟一解
故 或
考點:本題主要考查三角函數(shù)的和差倍半公式,三角函數(shù)、二次函數(shù)的圖象和性質(zhì)。
點評:中檔題,本題綜合考查三角函數(shù)的和差倍半公式,三角函數(shù)、二次函數(shù)的圖象和性質(zhì)。應(yīng)用三角公式對三角函數(shù)式進(jìn)行化簡,以便于利用其它知識解題,是這類題的顯著特點。本題利用“換元法”,將問題轉(zhuǎn)化成二次函數(shù)問題。在解方程的過程中,要特別注意解答范圍。
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
24 |
5π |
24 |
π |
24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
11π |
6 |
| ||
2 |
3 |
π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
xn+2 | xn-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
π |
2 |
A、f(x)=2sin(
| ||||
B、f(x)=2sin(
| ||||
C、f(x)=2sin(2x-
| ||||
D、f(x)=2sin(2x+
|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com