在空間四邊形ABCD中,已知AD=1,BC=,且AD⊥BC,對角線BD=,AC=, AC和BD所成的角是( )
A. B. C. D.
C
【解析】
試題分析:
分別取BC、AD、CD、BD、AB中點E、F、G、H、I,
連接EF、EG、EI、FG、FI、GH、GI、HI
∵△BCD中,GE是中位線,∴GE∥BD且GE=BD
同理可得FI∥BD且FI=BD
∴GE∥FI且GE=FI,得四邊形EGFI是平行四邊形
∵FG∥AC,GE∥BD
∴∠FGE(或其補角)是異面直線AC和BD所成的角
同理可得∠GHI(或其補角)是異面直線AD和BC所成的角
∵AD⊥BC,∴∠GHI=90°
∵GH=BC= ,HI=AD=,∴GI=" GH2+HI2" =1
∵平行四邊形EGFI中,F(xiàn)I=GE=BD= ,F(xiàn)G=EI=AC=
∴,得,解得EF=1
因此,,可得∠FGE=
∴異面直線AC和BD所成的角為
考點:異面直線及其所成的角.
點評:本題在空間四邊形ABCD中,已知相對棱的長度和所成角,并且知道對角線長度的情況下求對角線
所成角大小,著重考查了空間四邊形的性質(zhì)和異面直線所成角求法等知識,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
AE |
EB |
AH |
HD |
CF |
FB |
CG |
GD |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
AB |
1 |
2 |
BC |
3 |
2 |
DE |
AD |
A、
| ||
B、2
| ||
C、
| ||
D、2
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
8 |
A、30° | B、60° |
C、120° | D、60°或120° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com