【題目】已知函數(shù)f(x)=|2x-1|+|x-2a|.

(1)當a=1時,求f(x)≤3的解集;

(2)當x∈[1,2]時,f(x)≤3恒成立,求實數(shù)a的取值范圍.

【答案】見解析

【解析】(1)當a=1時,由f(x)≤3,可得|2x-1|+|x-2|≤3,

∴①或②或③

解①得0≤x<,解②得≤x<2,解③得x=2.

綜上可得,0≤x≤2,即不等式的解集為[0,2].

(2)∵當x∈[1,2]時,f(x)≤3恒成立,

即|x-2a|≤3-|2x-1|=4-2x,

故2x-4≤2a-x≤4-2x,

即3x-4≤2a≤4-x.

再根據(jù)3x-4在x∈[1,2]上的最大值為6-4=2,4-x的最小值為4-2=2,

∴2a=2,∴a=1,

即a的取值范圍為{1}.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當時,求曲線處的切線方程;

(2)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;

(3)若,在上存在一點,使得成立,

的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2-ax+ln(x+1)(a∈R).

(1)當a=2時,求函數(shù)f(x)的極值點;

(2)若函數(shù)f(x)在區(qū)間(0,1)上恒有f′(x)>x,求實數(shù)a的取值范圍;

(3)已知a<1,c1>0,且cn+1=f′(cn)(n=1,2,…),證明數(shù)列{cn}是單調(diào)遞增數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+y2=4,直線l:x+y=2.以O(shè)為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系.

(1)將圓C和直線l的方程化為極坐標方程;

(2)P是l上的點,射線OP交圓C于點R,又點Q在OP上且滿足|OQ|·|OP|=|OR|2,當點P在l上移動時,求點Q軌跡的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,若在區(qū)間上任取三個數(shù)、,均存在以、為邊長的三角形,則實數(shù)的取值范圍為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)時取得極小值.

1)求實數(shù)的值;

2)是否存在區(qū)間,使得在該區(qū)間上的值域為?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對同一類的,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“,兩項作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=x2+ax+b(a,b∈R)的定義域為[-1,1],且|f(x)|的最大值為M.

(1)證明:|1+b|≤M;

(2)證明:M≥.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù))為奇函數(shù),且相鄰兩對稱軸間的距離為.

(1)當時,求的單調(diào)遞減區(qū)間;

(2)將函數(shù)的圖象沿軸方向向右平移個單位長度,再把橫坐標縮短到原來的(縱坐標不變),得到函數(shù)的圖象.當時,求函數(shù)的值域.

查看答案和解析>>

同步練習(xí)冊答案