過拋物線焦點F的直線交該拋物線于A、B兩點,則線段AB中點的軌跡方程為   
【答案】分析:將直線方程代入到拋物線方程,利用中點坐標(biāo)公式,再消參即可.
解答:解:設(shè)直線方程可以寫成 y=k•x+1代入拋物線方程,得到0.25x2-kx-1=0,所以中點坐標(biāo)Xm=0.5(x1+x2)=2k
Ym=0.5(y1+y2)=0.5(kx1+kx2+2)=0.5k(x1+x2)+1=kXm+1=+1
所以軌跡方程就是 ,
故答案為
點評:本題主要考查直線與拋物線的位置關(guān)系,考查軌跡問題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

6、過拋物線焦點F的直線與拋物線交于A、B兩點,若A、B在拋物線的準(zhǔn)線上的射影為A1、B1,則∠A1FB1=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線焦點F的直線交拋物線于A、B兩點,通過點B平行于拋物線對稱軸的直線交拋物線的準(zhǔn)線于點D,求證:三點A、O、D共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線焦點F的直線與拋物線交于A、B兩點,若A、B在拋物線準(zhǔn)線上的射影分別為A1、B1,則∠A1FB1=
90°
90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知拋物線C1:y2=4x,圓C2:(x-1)2+y2=1,過拋物線焦點F的直線l交C1于A,D兩點(點A在x軸上方),直線l交C2于B,C兩點(點B在x軸上方).
(Ⅰ)求|AB|•|CD|的值;
(Ⅱ)設(shè)直線OA、OB、OC、OD的斜率分別為m、n、p、q,且滿足m+n+p+q=3
2
,并且|AB|,|BC|,|CD|成等差數(shù)列,求出所有滿足條件的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知頂點在原點、對稱軸為坐標(biāo)軸且開口向右的拋物線過點M(4,-4).
(1)求拋物線的方程;
(2)過拋物線焦點F的直線l與拋物線交于不同的兩點A、B,若|AB|=8,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案