【題目】已知F1、F2分別是雙曲線 ﹣ =1(a>0,b>0)的左、右焦點,以坐標(biāo)原點O為圓心,OF1為半徑的圓與雙曲線在第一象限的交點為P,則當(dāng)△PF1F2的面積等于a2時,雙曲線的離心率為( )
A.
B.
C.
D.2
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的各項均為正數(shù),且Sn= + +…+ ,S2= ,S3= .設(shè)[x]表示不大于x的最大整數(shù)(如[2.10]=2,[0.9]=0).
(1)試求數(shù)列{an}的通項;
(2)求T=[log21]+[log22]+[log23]+…+[log2( ﹣1)]+[log2( )]關(guān)于n的表達式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=ax2﹣2ax+b(a≠0)在閉區(qū)間[1,2]上有最大值0,最小值﹣1,則a,b的值為( )
A.a=1,b=0
B.a=﹣1,b=﹣1
C.a=1,b=0或a=﹣1,b=﹣1
D.以上答案均不正確
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)若對任意,都有,求的取值范圍;
(Ⅲ)證明函數(shù)的圖象在圖象的下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P ABCD中,底面ABCD為平行四邊形, ,PA⊥平面ABCD,E為PD的中點.
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)設(shè)AD=2, ,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個盒子里裝有標(biāo)號為1,2,3,…,5的5張標(biāo)簽,現(xiàn)隨機地從盒子里無放回地抽取兩張標(biāo)簽.記X為兩張標(biāo)簽上的數(shù)字之和.
(1)求X的分布列.
(2)求X的期望E(X)和方差D(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在五面體ABCDEF中,F(xiàn)A⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M為EC的中點,AF=AB=BC=FE= AD,
(1)求異面直線BF與DE所成的角的大。
(2)證明平面AMD⊥平面CDE;
(3)求二面角A﹣CD﹣E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工科院校對, 兩個專業(yè)的男女生人數(shù)進行調(diào)查,得到如下的列聯(lián)表:
專業(yè) | 專業(yè) | 總計 | |
女生 | 12 | 4 | 16 |
男生 | 38 | 46 | 84 |
總計 | 50 | 50 | 100 |
(Ⅰ)從專業(yè)的女生中隨機抽取2名女生參加某項活動,其中女生甲被選到的概率是多少?
(Ⅱ)能否有95%的把握認(rèn)為工科院校中“性別”與“專業(yè)”有關(guān)系?
附: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體ABCD﹣A1B1C1D1中,E、F分別是AA1、AB的中點,則EF與對角面A1C1CA所成角的度數(shù)是( )
A.30°
B.45°
C.60°
D.150°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com