已知定義在R上的函數(shù)y=f(x)滿足以下三個條件:①對于任意的x∈R,都有f(x+4)=f(x);②對于任意的a,b∈[0,2],且a<b,都有f(a)<f(b);③函數(shù)y=f(x+2)是偶函數(shù),則下列結(jié)論正確的是( )
A.f(4.5)<f(7)<(6.5)
B.f(7)<f(4.5)<f(6.5)
C.f(7)<f(6.5)<f(4.5)
D.f(4.5)<f(6.5)<f(7)
【答案】分析:求解本題需要先把函數(shù)的性質(zhì)研究清楚,由三個條件知函數(shù)周期為4,其對稱軸方程為x=2,在區(qū)間[0,2]上是增函數(shù),觀察四個選項發(fā)現(xiàn)自變量都不在已知的單調(diào)區(qū)間內(nèi)故應(yīng)用相關(guān)的性質(zhì)將其值用區(qū)間[0,2]上的函數(shù)值表示出,以方便利用單調(diào)性比較大。
解答:解:由①知f(x)是以4為周期的周期函數(shù);由②知f(x)在區(qū)間[0,2]上是增函數(shù);
由③知f(2+x)=f(2-x),其圖象的對稱軸為x=2,
∴f(4.5)=f(0.5),
f(7)=f(3)=f(2+1)=f(2-1)=f(1),
f(6.5)=f(2.5)=f(2+0.5)=f(2-0.5)=f(1.5),
∵0<0.5<1<1.5<2,且函數(shù)y=f(x)在區(qū)間[0,2]上是增函數(shù),
∴f(0.5)<f(1)<f(1.5),即f(4.5)<f(7)<f(6.5),
故選A.
點評:本題綜合考查了函數(shù)的周期性、函數(shù)的對稱性與函數(shù)的單調(diào)性,涉及到了函數(shù)的三個主要性質(zhì),本題中周期性與對稱性的作用是將不在同一個單調(diào)區(qū)間上的函數(shù)值的大小比較問題轉(zhuǎn)化成同一個單調(diào)區(qū)間上來比較,函數(shù)圖象關(guān)于直線x=a對稱,有兩個等價方程:①f(a+x)=f(a-x),②f(x)=f(2a-x),做題時應(yīng)根據(jù)題目條件靈活選擇對稱性的表達(dá)形式.