橢圓的離心率為,且經(jīng)過點過坐標原點的直線與均不在坐標軸上,與橢圓M交于A、C兩點,直線與橢圓M交于B、D兩點
(1)求橢圓M的方程;
(2)若平行四邊形ABCD為菱形,求菱形ABCD的面積的最小值
(1);(2)詳見解析;(3)最小值為
解析試題分析:(1)依題意有,再加上,解此方程組即可得的值,從而得故橢圓 的方程(2)由于四邊形ABCD是平行四邊形,所以ABCD的對角線AC和BD的中點重合
利用(1)所得橢圓方程,聯(lián)立方程組消去得:,顯然點A、C的橫坐標是這個方程的兩個根,由此可得線段的中點為 同理可得線段的中點為,由于中點重合,所以解得,或(舍)這說明和都過原點即相交于原點(3)由于對角線過原點且該四邊形為菱形,所以其面積為由方程組易得點A的坐標(用表示),從而得(用表示);同理可得(由于,故仍可用表示)這樣就可將表示為的函數(shù),從而求得其最小值
試題解析:(1)依題意有,又因為,所以得
故橢圓的方程為 3分
(2)依題意,點滿足
所以是方程的兩個根
得
所以線段的中點為
同理,所以線段的中點為 5分
因為四邊形是平行四邊形,所以
解得,或(舍)
即平行四邊形的對角線和相交于原點 7分
(3)點滿足
所以是方程的兩個根,即
故
同理, 9分
又因為,所以,其中
從而菱形的面積為
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C:+=1(a>b>0)的焦距為4,且過點P(,).
(1)求橢圓C的方程;
(2)設(shè)Q(x0,y0)(x0y0≠0)為橢圓C上一點.過點Q作x軸的垂線,垂足為E.取點A(0,2),連接AE,過點A作AE的垂線交x軸于點D.點G是點D關(guān)于y軸的對稱點,作直線QG,問這樣作出的直線QG是否與橢圓C一定有唯一的公共點?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C的中心在坐標原點,焦點在x軸上且過點P,離心率是.
(1)求橢圓C的標準方程;
(2)直線l過點E (-1,0)且與橢圓C交于A,B兩點,若|EA|=2|EB|,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
己知⊙O:x2+y2=6,P為⊙O上動點,過P作PM⊥x軸于M,N為PM上一點,且.
(1)求點N的軌跡C的方程;
(2)若A(2,1),B(3,0),過B的直線與曲線C相交于D、E兩點,則是否為定值?若是,求出該值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
P(x0,y0)(x0≠±a)是雙曲線E:-=1(a>0,b>0)上一點,M,N分別是雙曲線E的左,右頂點,直線PM,PN的斜率之積為.
(1)求雙曲線的離心率.
(2)過雙曲線E的右焦點且斜率為1的直線交雙曲線于A,B兩點,O為坐標原點,C為雙曲線上一點,滿足=λ+,求λ的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知中心在原點的雙曲線C的一個焦點是F1(-3,0),一條漸近線的方程是
(1)求雙曲線C的方程;
(2)若以k(k≠0)為斜率的直線l與雙曲線C相交于兩個不同的點M, N,且線段MA的垂直平分線與兩坐標軸圍成的三角形的面積為,求k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線C:y2=2px(p>0)的焦點為F,拋物線C與直線l1:y=-x的一個交點的橫坐標為8.
(1)求拋物線C的方程;
(2)不過原點的直線l2與l1垂直,且與拋物線交于不同的兩點A、B,若線段AB的中點為P,且|OP|=|PB|,求△FAB的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,橢圓的左焦點為,右焦點為,過的直線交橢圓于兩點, 的周長為8,且面積最大時,為正三角形.
(1)求橢圓的方程;
(2)設(shè)動直線與橢圓有且只有一個公共點,且與直線相交于點,證明:點在以為直徑的圓上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,點P(0,-1)是橢圓C1:=1(a>b>0)的一個頂點,C1的長軸是圓C2:x2+y2=4的直徑.l1,l2是過點P且互相垂直的兩條直線,其中l1交圓C2于A,B兩點,l2交橢圓C1于另一點D.
(1)求橢圓C1的方程;
(2)求△ABD面積取最大值時直線l1的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com