7.如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,AP=AB=AC=a,$AD=\sqrt{2}a$,PA⊥底面ABCD.
(1)求證:平面PCD⊥平面PAC;
(2)在棱PC上是否存在一點(diǎn)E,使得二面角B-AE-D的平面角的余弦值為$-\frac{{\sqrt{6}}}{3}$?若存在,求出$λ=\frac{CE}{CP}$的值?若不存在,說(shuō)明理由.

分析 (1)由勾股定理得:CD⊥AC,由線(xiàn)面垂直得PA⊥CD,從而CD⊥面PAC,由此能證明平面PCD⊥平面PAC.
(2)以A為原點(diǎn),AB,AC,AP所在直線(xiàn)分別為x軸,y軸,z軸建立空間直角坐標(biāo)系,利用向量法能求出結(jié)果.

解答 證明:(1)在△ACD中,AC=a,CD=a,AD=$\sqrt{2}$a,
 由勾股定理得:CD⊥AC
∵PA⊥底面ABCD,∴PA⊥CD,
AC?面PAC,PA?面PAC,PA∩AC=A
∴CD⊥面PAC
又∵CD?面PCD
∴平面PCD⊥平面PAC.
解:(2)由(1)知:AB⊥AC,又PA⊥底面ABCD
∴以A為原點(diǎn),AB,AC,AP所在直線(xiàn)分別為x軸,y軸,z軸建立如圖所示坐標(biāo)系
則A(0,0,0),B(a,0,0),C(0,a,0),
D(-a,a,0),P(0,0,a)
假設(shè)點(diǎn)E存在,且λ=$\frac{CE}{CP}$,則$\overrightarrow{CE}$=λ$\overrightarrow{CP}$    (xE,yE-a,zE)=λ(0,-a,a)
∴xE=0,yE=(1-λ)a,zE=λa
$\overrightarrow{AB}$=(a,0,0)$\overrightarrow{AE}$=(0,(1-λ)a,λa),$\overrightarrow{AD}$=(-a,a,0)
設(shè)平面BAE的法向量為$\overrightarrow{{n}_{1}}$=(x1,y1,z1),平面DAE的法向量為$\overrightarrow{{n}_{2}}$=(x2,y2,z2),
則$\left\{\begin{array}{l}{\overrightarrow{{n}_{1}}•\overrightarrow{AB}=a{x}_{1}=0}\\{\overrightarrow{{n}_{1}}•\overrightarrow{AE}=(1-λ)a{y}_{1}+λa{z}_{1}=0}\end{array}\right.$,取y1=λ,得$\overrightarrow{{n}_{1}}=(0,λ,λ-1)$,
$\left\{\begin{array}{l}{\overrightarrow{{n}_{2}}•\overrightarrow{AD}=-a{x}_{2}+a{y}_{2}=0}\\{\overrightarrow{{n}_{2}}•\overrightarrow{AE}=(1-λ)a{y}_{2}+λa{z}_{2}=0}\end{array}\right.$,取x2=λ,得$\overrightarrow{{n}_{2}}$=(λ,λ,λ-1)
cos<$\overrightarrow{{n}_{1}},\overrightarrow{{n}_{2}}$>=$\frac{\overrightarrow{{n}_{1}}•\overrightarrow{{n}_{2}}}{|\overrightarrow{{n}_{1}}|•|\overrightarrow{{n}_{2}}|}$=$\frac{{λ}^{2}+(λ-1)^{2}}{\sqrt{{λ}^{2}+(λ-1)^{2}}•\sqrt{{λ}^{2}+{λ}^{2}+(λ-1)^{2}}}$=$\frac{\sqrt{2{λ}^{2}-2λ+1}}{\sqrt{3{λ}^{2}-2λ+1}}$,
由題意:|cos<$\overrightarrow{{n}_{1}},\overrightarrow{{n}_{2}}$>|=$\frac{\sqrt{2{λ}^{2}-2λ+1}}{\sqrt{3{λ}^{2}-2λ+1}}$=$\frac{\sqrt{6}}{3}$,
整理得:3(2λ2-2λ+1)=2(3λ2-2λ+1),解得λ=$\frac{1}{2}$,
∴棱PC上存在一點(diǎn)E,使得二面角B-AE-D的平面角的余弦值為-$\frac{\sqrt{6}}{3}$,且此時(shí)λ=$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查面面垂直的證明,考查點(diǎn)是否存在的判斷與求法,考查空間中線(xiàn)線(xiàn)、線(xiàn)面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力、空間想象能力,考查化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若函數(shù)f(x)=loga(8-ax)滿(mǎn)足:對(duì)任意x1,x2∈(0,2](x1≠x2),都有(x1-x2)[f(x1)-f(x2)]<0,則實(shí)數(shù)a的取值范圍是(  )
A.(0,1)B.(1,4)C.(1,4]D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知數(shù)列{an}的前n項(xiàng)和為${S_n}={2^{n+1}}-2$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an•log2an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.(1)若函數(shù)f(x)=lnx+asin(1-x)在區(qū)間(0,1)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)證明:$\sum_{k=1}^{n}$sin$\frac{1}{(k+1)^{2}}$<ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,已知正方形ABCD和矩形ACEF所在平面相互垂直,AB=$\sqrt{2}$,AF=1,G為線(xiàn)段AD上的任意一點(diǎn).
(1)若M是線(xiàn)段EF的中點(diǎn),證明:平面AMG⊥平面BDF;
(2)若N為線(xiàn)段EF上任意一點(diǎn),設(shè)直線(xiàn)AN與平面ABF,平面BDF所成角分別是α,β,求$\frac{sinα}{sinβ}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,AC=2ED,AC∥平面EDB,AC⊥平面BCD,平面ACDE⊥平面ABC.
(Ⅰ)求證:AC∥ED;
(Ⅱ)求證:DC⊥BC;
(Ⅲ)當(dāng)BC=CD=DE=1時(shí),求二面角A-BE-D的余弦值;
(Ⅳ)在棱AB上是否存在點(diǎn)P滿(mǎn)足EP∥平面BDC;
(Ⅴ)設(shè)$\frac{CD}{CE}$=k,是否存在k滿(mǎn)足平面ABE⊥平面CBE?若存在求出k值,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知菱形ABCD中,∠A=$\frac{π}{3}$,AB=1,E為BC邊上任一點(diǎn),則$\overrightarrow{AE}$•$\overrightarrow{EC}$的最大值為( 。
A.$\frac{1}{3}$B.$\frac{9}{16}$C.$\frac{2}{3}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R),當(dāng)x∈[0,1]時(shí),|f(x)|≤1,則(a+b)c的最大值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.函數(shù)y=$\frac{sin2x}{1-cosx}$的部分圖象大致為( 。
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案