(本題12分)對于函數(shù)為奇函數(shù)(Ⅰ)求的值;(Ⅱ)用函數(shù)單調性定義及指數(shù)函數(shù)性質證明: 上是增函數(shù)。
解:(Ⅰ)為奇函數(shù),
解得 ………4分
(Ⅱ)證明: 由(Ⅰ),在上任取,
…………8分,即
上單調遞增. 12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的定義域為R,若都是奇函數(shù),則(   )        
A.是偶函數(shù)B.是奇函數(shù)
C.D.是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設函數(shù),若,則下列不等式必定成立的是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知f(x)(x∈R,且x≠kπ+
π
2
(k∈Z))是周期為π的函數(shù),當x∈(-
π
2
,
π
2
)時,f(x)=2x+cosx.設a=f(-1),b=f(-2),c=f(-3)則( 。
A.c<b<aB.b<c<aC.c<a<bD.a(chǎn)<c<b

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若函數(shù)f(x)=(m-1)x2+2mx+3為偶函數(shù),則f(0),f(1),f(-
2
)的大小關系為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)f(x)=tx2+2t2x+t-1(x∈R,t>0).
(Ⅰ)求f(x)的最小值h(t);
(Ⅱ)若h(t)<-2t+m對t∈(0,2)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知定義域為R的函數(shù)f(x)=
2x-b
2x+a
是奇函數(shù).
(1)求a,b的值;
(2)利用定義判斷函數(shù)y=f(x)的單調性;
(3)若對任意t∈[0,1],不等式f(2t2+kt)+f(k-t2)>0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

f(x)為奇函數(shù),定義域又f(x)在,則f(x)>0的解集是(   )
A           B  (0,1)      C     D 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

上的奇函數(shù),且當時,,則當_____________________。

查看答案和解析>>

同步練習冊答案