【題目】現(xiàn)定義:設是非零實常數(shù),若對于任意的,都有,則稱函數(shù)為“關于的偶型函數(shù)”

1)請以三角函數(shù)為例,寫出一個“關于2的偶型函數(shù)”的解析式,并給予證明

2)設定義域為的“關于的偶型函數(shù)”在區(qū)間上單調遞增,求證在區(qū)間上單調遞減

3)設定義域為的“關于的偶型函數(shù)”是奇函數(shù),若,請猜測的值,并用數(shù)學歸納法證明你的結論

【答案】1,答案不唯一(2)證明見解析(3,證明見解析

【解析】

1)令,由于,則可證明;

2)根據(jù)題意可知,再根據(jù)函數(shù)的單調性即可證明;

3)由題得,可得結合數(shù)學歸納法得到,即可得證.

1

為“關于2的偶型函數(shù)”.

2.

任取,因為函數(shù)在單調遞增,所以.所以函數(shù)在上單調遞減

3)猜測數(shù)學歸納法證明:

1.因為是奇函數(shù),所以得證

2.假設當,成立,

因為,

又∵奇函數(shù),∴

∴當時,,所以得證.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求的極值;

2)設,對任意都有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的單調區(qū)間;

2)若函數(shù)取得極小值,若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若曲線處切線與坐標軸圍成的三角形面積為,求實數(shù)的值;

2)若,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線過點,其參數(shù)方程為為參數(shù),.為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為

1)求曲線的普通方程和曲線的直角坐標方程;

2)已知曲線與曲線交于,兩點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中e為自然對數(shù)的底數(shù).

1)當時,求處的切線方程;

2)求函數(shù)的單調區(qū)間;

3)若存在(),使得,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有下列四個命題:(1)一定存在直線,使函數(shù)的圖像與函數(shù)的圖像關于直線對稱;(2)不等式:的解集為;(3)已知數(shù)列的前項和為,則數(shù)列一定是等比數(shù)列;(4)過拋物線上的任意一點的切線方程一定可以表示為.則正確命題的序號為_________________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,是等邊三角形,是等腰直角三角形, ,平面平面,平面.

(1) 求證:

(2) 若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司欲對員工飲食習慣進行一次調查,從某科室的100人中的飲食結構調查結果統(tǒng)計如下表.

主食蔬菜

主食肉類

總計

不超過45

15

40

45歲以上

20

總計

1)完成列聯(lián)表,并判斷能否有99%的把握認為員工的飲食習慣與年齡有關?

2)在45歲以上員工中按照飲食習慣進行分層抽樣抽出一個容量為6的樣本,從這6個人中隨機抽取3個人,求這3個人都主食蔬菜的概率.

附:

0.050

0.010

0.001

3.841

6.635

10.828

.

查看答案和解析>>

同步練習冊答案