16.若對(duì)于任意實(shí)數(shù)x,有x4=a0+a1(x-2)+a2(x-2)2+a3(x-2)3+a4(x-2)4,則a2的值為(  )
A.4B.12C.24D.48

分析 由題意根據(jù) x4=[2+(x-2)]4,利用二項(xiàng)式定理求得a2的值.

解答 解:∵x4=[2+(x-2)]4=${C}_{4}^{0}$•24+${C}_{4}^{1}$•23•(x-2)+${C}_{4}^{2}$•22•(x-2)2+${C}_{4}^{3}$•2•(x-2)3+${C}_{4}^{4}$•(x-2)4 
=a0+a1(x-2)+a2(x-2)2+a3(x-2)3+a4(x-2)4
則a2 =4${C}_{4}^{2}$=24,
故選:C.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列關(guān)系中,正確的個(gè)數(shù)為( 。
①$\frac{1}{2}$∈R  
②$\sqrt{2}$∉Q  
③|-3|∈N+  
④|-$\sqrt{3}$|∈Q.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.求值 cos20°cos40°cos60°cos80°=$\frac{1}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)函數(shù)f(x)=x3+x,若當(dāng)$0≤θ≤\frac{π}{2}$時(shí),f(msinθ)+f(sinθ-cos2θ+2)>0恒成立,則實(shí)數(shù)m的取值范圍是( 。
A.(-3,+∞)B.(-1,+∞)C.(-∞,-3)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=lnx-$\frac{{{{(x-1)}^2}}}{2}$,g(x)=x-1.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若存在x0>1,當(dāng)x∈(1,x0)時(shí),恒有f(x)>mg(x),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在區(qū)間(0,5)上隨機(jī)取一個(gè)實(shí)數(shù)x,則x滿足x2-2x<0的概率為$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知命題p:“?n∈N*,使得 n2<2n”,則命題¬p的真假為假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.宿州某中學(xué)N名教師參加“低碳節(jié)能你我他”活動(dòng),他們的年齡在25歲至50歲之間,按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50),得到的頻率分布直方圖如圖所示.
下表是年齡的頻數(shù)分布表:
區(qū)間[25,30)[30,35)[35,40)[40,45)[45,50]
人數(shù)25mp7525
(1)求正整數(shù)m,p,N的值;
(2)用分層抽樣的方法,從第1、3、5組抽取6人,則第1、3、5組各抽取多少人?
(3)在(2)的條件下,從這6人中隨機(jī)抽取2人參加學(xué)校之間的宣傳交流活動(dòng),求恰有1人在第3組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.角A為△ABC的一個(gè)內(nèi)角,且sinA+cosA=$\frac{1}{3}$,則cos2A值為-$\frac{\sqrt{17}}{9}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案