4.△ABC中,$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AC}=\overrightarrow b$,$\overrightarrow{BD}=\frac{1}{2}\overrightarrow{DC}$,則$\overrightarrow{AD}$=(  )
A.$\frac{2}{3}\overrightarrow a+\frac{1}{3}\overrightarrow b$B.$\frac{1}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b$C.$\frac{1}{3}\overrightarrow a+\frac{1}{3}\overrightarrow b$D.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b$

分析 根據(jù)向量的加減的幾何意義即可求出.

解答 解:△ABC中,$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AC}=\overrightarrow b$,$\overrightarrow{BD}=\frac{1}{2}\overrightarrow{DC}$,
則$\overrightarrow{AD}$=$\overrightarrow{AB}$+$\overrightarrow{BD}$=$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{BC}$=$\overrightarrow{AB}$+$\frac{1}{3}$($\overrightarrow{AC}$-$\overrightarrow{AB}$)=$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$=$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$,
故選:A

點評 本題考查了向量的加減的幾何意義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)$\overrightarrow{a}$,$\overrightarrow$是兩個非零向量.向量$\overrightarrow{a}$=(1,x),向量$\overrightarrow$=(3,1).向量$\overrightarrow{a}⊥\overrightarrow$,則x的值為( 。
A.$\frac{1}{3}$B.3C.$-\frac{1}{3}$D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.若平面向量$\overrightarrow a,\overrightarrow b$滿足$|\overrightarrow a|=\sqrt{2},|\overrightarrow b|=2,(\overrightarrow a-\overrightarrow b)⊥\overrightarrow a$
(1)求$\overrightarrow a$與$\overrightarrow b$的夾角θ;
(2)求$|2\overrightarrow a+\overrightarrow b|$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知定義在R上的函數(shù)f(x)滿足f(-x)=f(x),且對于任意x1,x2∈[0,+∞),x1≠x2,均有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0.若f(-$\frac{1}{3}$)=$\frac{1}{2}$,2f(log${\;}_{\frac{1}{8}}$x)<1,則x的取值范圍為( 。
A.(0,2)B.$({\frac{1}{2},+∞})$C.$({0,\frac{1}{2}})∪({2,+∞})$D.$({\frac{1}{2},1})∪({1,2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若(1-2x)2017=a0+a1x+…+a2017x2017(x∈R),則$\frac{a_1}{2^2}+\frac{a_2}{2^3}+…+\frac{{{a_{2017}}}}{{{2^{2018}}}}$=( 。
A.$\frac{1}{2}$B.1C.$-\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知0<x≤3,則$y=x+\frac{16}{x}$的最小值為(  )
A.$\frac{25}{3}$B.16C.20D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)$f(x)=\sqrt{x+3}+{log_2}(6-x)$的定義域是( 。
A.(6,+∞)B.(-3,6)C.(-3,+∞)D.[-3,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,橢圓C:x 2+3y 2=a2(a>0).
(Ⅰ) 求橢圓C的離心率;
(Ⅱ) 若a=$\sqrt{6}$,M,N是橢圓C上兩點,且|MN|=2$\sqrt{3}$,求△MON面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,角A,B,C的對邊分別為a,b,c.已知A=45°,cosB=$\frac{4}{5}$.
(1)求cosC的值;
(2)若BC=20,D為AB的中點,求CD的長.

查看答案和解析>>

同步練習(xí)冊答案