證明:(1)∵ABCD-A
1B
1C
1D
1是一個(gè)長方體,
∴BC⊥平面CC
1D
1D,
∵P∈平面CC
1D
1D,
∴PD?平面CC
1D
1D,
∴PD⊥BC.
∵
,AB=2,
∴△PCD為等腰直角三角形,
∴PD⊥PC.
∵PD垂直于平面PBC內(nèi)的兩條相交直線PC和BC,
∴PD⊥平面PBC.
解:(2)當(dāng)a=2時(shí),四邊形CC
1D
1D是一個(gè)正方形,
∴∠CDC
1=45°,
∵∠PCD=45°,
又PC和C
1D在同一個(gè)平面內(nèi),
∴PC∥DC
1,
∵DC
1?平面AB
1D,PC?平面AB
1D,
∴PC∥平面AB
1D.
(3)過點(diǎn)P作PE⊥CD交CD于E,
∵面ABCD⊥面PDC,面ABCD∩面PDC=CD,
∴PE⊥平面ABCD,
∴PE=1.
連接AC,設(shè)點(diǎn)C到平面PAB的距離為h,
三棱錐P-ABC的體積與三棱錐C-PAB的體積相等,
則
,
∵PA=PD=2,AB=2,
∴
,
,
∴
,
,
∴點(diǎn)C到平面PAB的距離為
.
(4)∵AD⊥平面CC
1D
1D(6),PD,DC
1在平面CC
1D
1D內(nèi),
AD⊥PD,AD⊥DC
1,
由(2)知∠PDC
1=90°,
即PD⊥DC
1,
∴PD,PA,PC
1兩兩垂直,
∴點(diǎn)P,A,D,C
1所在的球面就是以PD,DC
1,AD為相鄰三條棱的長方體的外接球面,
∵
,
,
∴此球面的直徑
,
∴球面的半徑
,
∴所求球面的面積為
.
分析:(1)要證線面垂直,只需證線線垂直.據(jù)
,AB=2,可得PD⊥PC;BC⊥平面PDC,可得PD⊥BC,從而得證.
(2)若PC∥平面AB
1D,據(jù)線面平行的性質(zhì)定理可得PC∥DC
1,知∠CDC
1=∠PCD=45°,則AA
1=CD=2即可.
(3)欲求點(diǎn)C到平面PAB的距離,直接由點(diǎn)C作平面PAB的垂線,需補(bǔ)形,不易作出,考慮用等積法完成,十分簡潔.
(4)在條件及(2)的前提下,可知PD,PA,PC
1兩兩垂直,引導(dǎo)學(xué)生分析:點(diǎn)P,A,D,C
1所在的球面就是以PD,DC
1,AD為相鄰三條棱的長方體的外接球面,從而可求此球面的直徑,可求出球面的面積.
點(diǎn)評:本題考查點(diǎn)、線、面間的距離和計(jì)算,綜合性性,難度大,是高考的重點(diǎn),計(jì)算繁瑣,容易出錯.考查運(yùn)算求解能力,推理論證能力;考查函數(shù)與方程思想,化歸與轉(zhuǎn)化思想.解題時(shí)要認(rèn)真審題,注意化立體問題為平面問題.