【題目】已知橢圓經(jīng)過點(diǎn),右焦點(diǎn)到直線的距離為3.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)A作兩條互相垂直的直線,分別交橢圓于M,N兩點(diǎn),求證:直線MN恒過定點(diǎn).
【答案】(1)(2)見解析
【解析】
(1)由題可知值,由右焦點(diǎn)到直線的距離為3表示,和 構(gòu)建方程組,求得,即可求得橢圓E的標(biāo)準(zhǔn)方程;
(2)設(shè)直線的方程為,聯(lián)立直線方程與橢圓方程,即可表示點(diǎn)M的坐標(biāo),由,垂直,則將M坐標(biāo)中的k換成,即可表示N點(diǎn)坐標(biāo),再利用兩點(diǎn)坐標(biāo)分別表示與,觀察即可證明.
(1)由題意知,,,,
解得,,.
所以橢圓的標(biāo)準(zhǔn)方程為.
(2)顯然直線,的斜率存在.
設(shè)直線的方程為,
聯(lián)立方程組,得,
解得,,
所以,.
由,垂直,可得直線的方程為.
用替換前式中的k,可得,.
則,
,
所以,故直線MN恒過定點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型工廠有6臺大型機(jī)器,在1個月中,1臺機(jī)器至多出現(xiàn)1次故障,且每臺機(jī)器是否出現(xiàn)故障是相互獨(dú)立的,出現(xiàn)故障時需1名工人進(jìn)行維修,每臺機(jī)器出現(xiàn)故障的概率為.已知1名工人每月只有維修2臺機(jī)器的能力(若有2臺機(jī)器同時出現(xiàn)故障,工廠只有1名維修工人,則該工人只能逐臺維修,對工廠的正常運(yùn)行沒有任何影響),每臺機(jī)器不出現(xiàn)故障或出現(xiàn)故障時能及時得到維修,就能使該廠獲得10萬元的利潤,否則將虧損2萬元.該工廠每月需支付給每名維修工人1萬元的工資.
(1)若每臺機(jī)器在當(dāng)月不出現(xiàn)故障或出現(xiàn)故障時,有工人進(jìn)行維修(例如:3臺大型機(jī)器出現(xiàn)故障,則至少需要2名維修工人),則稱工廠能正常運(yùn)行.若該廠只有1名維修工人,求工廠每月能正常運(yùn)行的概率;
(2)已知該廠現(xiàn)有2名維修工人.
(。┯浽搹S每月獲利為萬元,求的分布列與數(shù)學(xué)期望;
(ⅱ)以工廠每月獲利的數(shù)學(xué)期望為決策依據(jù),試問該廠是否應(yīng)再招聘1名維修工人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在五面體ABCDPN中,棱PA⊥面ABCD,AB=AP=2PN,底面ABCD是菱形,∠BAD= .
(1)求證:PN∥AB;
(2)求NC與平面BDN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個排球隊(duì)在采用局勝制排球決賽中相遇,已知每局比賽中甲獲勝的概率是.
(1)求比賽進(jìn)行了局就結(jié)束的概率;
(2)若第局甲勝,兩隊(duì)又繼續(xù)進(jìn)行了局結(jié)束比賽,求的分布列和數(shù)學(xué)期望
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點(diǎn),右焦點(diǎn)到直線的距離為3.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)A作兩條互相垂直的直線,分別交橢圓于M,N兩點(diǎn),求證:直線MN恒過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一種水果的經(jīng)驗(yàn)表明,該水果每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足關(guān)系式,其中,為常數(shù).已知銷售價格為6元/千克時,每日可售出該水果52千克.
(1)求的值;
(2)若該水果的成本為5元/千克,試確定銷售價格的值,使商場每日銷售該水果所獲得的利潤最大,并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,底面,,為線段的中點(diǎn).
(1)若為線段上的動點(diǎn),證明:平面平面;
(2)若為線段,,上的動點(diǎn)(不含,),,三棱錐的體積是否存在最大值?如果存在,求出最大值;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com