17.已知{an}是遞增的等差數(shù)列,且滿足a2a4=21,a1+a5=10.
(1)求{an}的通項(xiàng)公式;
(2)若數(shù)列{cn}前n項(xiàng)和Cn=an+1,數(shù)列{bn}滿足bn=2ncn(n∈N*),求{bn}的前n項(xiàng)和.

分析 (1)通過(guò)設(shè)等差數(shù)列{an}的公差為d,則依題設(shè)知d>0,利用a1+a5=2a3=10可知a3=5,進(jìn)而利用a2a4=21可知d=2,進(jìn)而計(jì)算可得結(jié)論;
(2)通過(guò)(1)知Cn=an+1=2n,通過(guò)令n=1可得c1=2,利用Cn=2n與Cn-1=2(n-1)作差,進(jìn)而計(jì)算可知數(shù)列{bn}是首項(xiàng)為4、公比為2的等比數(shù)列,利用等比數(shù)列的求和公式計(jì)算即得結(jié)論.

解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,則依題設(shè)知d>0,
由a1+a5=10,可得2a3=10,即a3=5,
由a2a4=21,得(5-d)(5+d)=21,可得d=±2,
∵{an}是遞增的等差數(shù)列,
∴d=2,a1=5-2d=1,
∴an=2n-1;
(2)由(1)知Cn=an+1=2n,可得c1=2,Cn-1=2(n-1),
兩式相減可得cn=2(n∈N*),
∴bn=2n+1,
所以數(shù)列{bn}是首項(xiàng)為4、公比為2的等比數(shù)列,
所以前n項(xiàng)和Sn=$\frac{4(1-2n)}{1-2}$=2n+2-4.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查運(yùn)算求解能力,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.|a|=|b|是a2=b2的( 。
A.充分條件而非必要條件B.必要條件而非充分條件
C.充要條件D.非充分條件也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知數(shù)列{an}為等差數(shù)列,a3=3,S6=21,數(shù)列{$\frac{1}{{a}_{n}}$}的前n項(xiàng)和為Sn,若對(duì)一切n∈N*,恒有S2n-Sn>$\frac{m}{16}$成立,則m的取值范圍是m<8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S3=15,a3和a5的等差中項(xiàng)為9
(1)求an及Sn
(2)令bn=$\frac{4}{{{a}_{n}}^{2}-1}$(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知{an}是首項(xiàng)為1,公比為q的等比數(shù)列,且a4,a6,a5成等差數(shù)列.
(Ⅰ)求{an}的前n項(xiàng)和Sn
(Ⅱ)設(shè){bn}是以2為首項(xiàng),q為公差的等差數(shù)列,其前n項(xiàng)和為T(mén)n,當(dāng)n≥2時(shí),比較Tn與bn的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)x3+ax+b=0,其中a,b均為實(shí)數(shù).下列條件中,使得該三次方程僅有一個(gè)實(shí)根的是①③④.(寫(xiě)出所有正確條件的編號(hào))
①a=b=-3;②a=-3,b=2;③a=-3,b>2;④a=0,b=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)函數(shù)f(x)=x3+2x2+bx-3在x1,x2處取得極值,且x${\;}_{1}^{2}+{x}_{2}^{2}$=$\frac{34}{9}$,則b=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.定義在實(shí)數(shù)集R上的函數(shù)y=f(x)具有下列兩條性質(zhì):
①對(duì)于任意x∈R,都有f(x3)=[f(x)]3;
②對(duì)于任意x1,x2∈R,當(dāng)x1≠x2時(shí),都有f(x1)≠f(x2).則f(-1)+f(0)+f(1)的值為( 。
A.1B.2C.-1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)f(x)是定義在R上且f(x+2)=f(2-x),f(7-x)=f(7+x),在閉區(qū)間[0,7]上,使f(x)=0的x值僅為1和3.
(1)判斷函數(shù)f(x)的奇偶性;
(2)試求方程f(x)=0在閉區(qū)間[-2016,2016]上根的個(gè)數(shù),并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案