已知向量數(shù)學(xué)公式=(cosθ,sinθ)與數(shù)學(xué)公式=(cosθ,-sinθ)互相垂直,且θ為銳角,則函數(shù)f(x)=sin(2x-θ)的圖象的一條對(duì)稱軸是直線


  1. A.
    x=π
  2. B.
    x=數(shù)學(xué)公式
  3. C.
    x=數(shù)學(xué)公式
  4. D.
    x=數(shù)學(xué)公式
B
分析:由向量=(cosθ,sinθ)與=(cosθ,-sinθ)互相垂直,得cos2θ-sin2θ=cos2θ=0,由θ為銳角,得.由函數(shù)f(x)=sin(2x-θ)=sin(2x-)的對(duì)稱軸方程為2x-=k,k∈Z,知x=,k∈Z,由此能求出結(jié)果.
解答:∵向量=(cosθ,sinθ)與=(cosθ,-sinθ)互相垂直,
∴cos2θ-sin2θ=cos2θ=0,
∵θ為銳角,
∴2θ=,
∴函數(shù)f(x)=sin(2x-θ)=sin(2x-)的對(duì)稱軸方程為2x-=k,k∈Z,
即x=,k∈Z,
當(dāng)k=1時(shí),x=
故選B.
點(diǎn)評(píng):本題考查平面向量的坐標(biāo)運(yùn)算,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,注意數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系和三角函數(shù)性質(zhì)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(cosα,sinα),
b
=(cosβ,sinβ),
c
=(1,7sinα),且0<β<α<
π
2
.若
a
b
=
13
14
,
a
c

(1)求β的值;
(2)求cos(2α-
1
2
β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(cosθ,sinθ),向量
b
=(
3
,1
),且
a
b
,則tanθ的值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(cosωx,sinωx),
b
=(cosωx,
3
cosωx),其中(0<ω<2).函數(shù),f(x)=
a
b
-
1
2
其圖象的一條對(duì)稱軸為x=
π
6

(I)求函數(shù)f(x)的表達(dá)式及單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a、b、c分別為角A、B、C的對(duì)邊,S為其面積,若f(
A
2
)
=1,b=1,S△ABC=
3
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•昌平區(qū)二模)已知向量
a
=(cosθ,sinθ),
b
=(
3
,-1
),-
π
2
≤θ≤
π
2

(Ⅰ)當(dāng)
a
b
時(shí),求θ的值;
(Ⅱ)求|
a
+
b
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(cosα,sinα),
b
=(cosβ,sinβ),若|
a
-
b
|=
2
,則
a
b
的夾角為(  )
A、60°B、90°
C、120°D、150°

查看答案和解析>>

同步練習(xí)冊(cè)答案