【題目】浙江省現(xiàn)行的高考招生制度規(guī)定除語、數(shù)、英之外,考生須從政治、歷史、地理、物理、化學(xué)、生物、技術(shù)這7門高中學(xué)考科目中選擇3門作為高考選考科目,成績計(jì)入高考總分.已知報(bào)考某高校、兩個(gè)專業(yè)各需要一門科目滿足要求即可,專業(yè):物理、化學(xué)、技術(shù);專業(yè):歷史、地理、技術(shù).考生小李今年打算報(bào)考該高校這兩個(gè)專業(yè)的選考方式有______ 種.(用數(shù)字作答)

【答案】27;

【解析】

根據(jù)題意,分四種情況討論即可,最終將每種情況的個(gè)數(shù)加到一起.

根據(jù)題意得到分情況:當(dāng)考生選擇技術(shù)時(shí),兩個(gè)專業(yè)均可報(bào)考,再從剩下的6門課中選擇兩科即可,方法有種;當(dāng)學(xué)生不選技術(shù)時(shí),可以從物理化學(xué)中選擇一科,再從歷史,地理選一科,最后從政治生物中選擇一科,有種方法;當(dāng)學(xué)生同時(shí)選物理化學(xué)時(shí),還需要選擇歷史,地理中的一科,有2中選擇,當(dāng)學(xué)生同時(shí)選擇歷史,地理時(shí),需要從物理化學(xué)中再選擇一科,也有2種方法,共有4種;最終加到一起共有:15+8+4=27.

故答案為:27.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的質(zhì)量按照其質(zhì)量指標(biāo)值M進(jìn)行等級(jí)劃分,具體如下表:

質(zhì)量指標(biāo)值M

等級(jí)

三等品

二等品

一等品

現(xiàn)從某企業(yè)生產(chǎn)的這種產(chǎn)品中隨機(jī)抽取了100件作為樣本,對(duì)其質(zhì)量指標(biāo)值M進(jìn)行統(tǒng)計(jì)分析,得到如圖所示的頻率分布直方圖.

(1)記A表示事件“一件這種產(chǎn)品為二等品或一等品”,試估計(jì)事件A的概率;

(2)已知該企業(yè)的這種產(chǎn)品每件一等品、二等品、三等品的利潤分別為10元、6元、2元,試估計(jì)該企業(yè)銷售10000件該產(chǎn)品的利潤;

(3)根據(jù)該產(chǎn)品質(zhì)量指標(biāo)值M的頻率分布直方圖,求質(zhì)量指標(biāo)值M的中位數(shù)的估計(jì)值(精確到0.01)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)具備以下兩個(gè)條件:(1)至少有一條對(duì)稱軸或一個(gè)對(duì)稱中心;(2)至少有兩個(gè)零點(diǎn),則稱這樣的函數(shù)為“多元素”函數(shù),下列函數(shù)中為“多元素”函數(shù)的是_______.

;②;③;④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角梯形PBCD中, ,APD的中點(diǎn),如下左圖。將沿AB折到的位置,使,點(diǎn)ESD上,且,如下圖。

1)求證: 平面ABCD;

2)求二面角E—AC—D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在印度有一個(gè)古老的傳說:舍罕王打算獎(jiǎng)賞國際象棋的發(fā)明人一宰相西薩·班·達(dá)依爾.國王問他想要什么,他對(duì)國王說:“陛下,請(qǐng)您在這張棋盤的第1個(gè)小格里,賞給我1粒麥子,在第2個(gè)小格里給2粒,第3小格給4粒,以后每1小格都比前1小格加1倍.請(qǐng)您把這樣擺滿棋盤上所有的64格的麥粒,都賞給您的仆人吧!”國王覺得這要求太容易滿足了,就同意給他這些麥粒.當(dāng)人們把一袋一袋的麥子搬來開始計(jì)數(shù)時(shí),國王才發(fā)現(xiàn)就是把全印度甚至全世界的麥粒全拿來,也滿足不了那位宰相的要求.那么,宰相要求得到的麥粒到底有多少粒?如圖所示的程序框圖是為了計(jì)算上面這個(gè)問題而設(shè)計(jì)的,那么在“”和“”中,可以先后填入(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科研團(tuán)隊(duì)對(duì)某一生物生長規(guī)律進(jìn)行研究,發(fā)現(xiàn)其生長蔓延的速度越來越快.開始在某水域投放一定面積的該生物,經(jīng)過2個(gè)月其覆蓋面積為18平方米,經(jīng)過3個(gè)月其覆蓋面積達(dá)到27平方米.該生物覆蓋面積(單位:平方米)與經(jīng)過時(shí)間個(gè)月的關(guān)系有兩個(gè)函數(shù)模型可供選擇.

1)試判斷哪個(gè)函數(shù)模型更合適,并求出該模型的函數(shù)解析式;

2)問約經(jīng)過幾個(gè)月,該水域中此生物的面積是當(dāng)初投放的1000(參考數(shù)據(jù):)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為2的正方形中,,分別為,的中點(diǎn),的中點(diǎn),沿,,將正方形折起,使,重合于點(diǎn),在構(gòu)成的四面體中,下列結(jié)論中錯(cuò)誤的是( )

A. 平面

B. 直線與平面所成角的正切值為

C. 異面直線和求所成角為

D. 四面體的外接球表面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年2月13日《煙臺(tái)市全民閱讀促進(jìn)條例》全文發(fā)布,旨在保障全民閱讀權(quán)利,培養(yǎng)全民閱讀習(xí)慣,提高全民閱讀能力,推動(dòng)文明城市和文化強(qiáng)市建設(shè).某高校為了解條例發(fā)布以來全校學(xué)生的閱讀情況,隨機(jī)調(diào)查了200名學(xué)生每周閱讀時(shí)間(單位:小時(shí))并繪制如圖所示的頻率分布直方圖.

(1)求這200名學(xué)生每周閱讀時(shí)間的樣本平均數(shù)和樣本方差(同一組中的數(shù)據(jù)用該組區(qū)間的中間值代表);

(2)由直方圖可以認(rèn)為,目前該校學(xué)生每周的閱讀時(shí)間服從正態(tài)分布,其中近似為樣本平均數(shù)近似為樣本方差

(i)一般正態(tài)分布的概率都可以轉(zhuǎn)化為標(biāo)準(zhǔn)正態(tài)分布的概率進(jìn)行計(jì)算:若,令,則,且.利用直方圖得到的正態(tài)分布,求

(ii)從該高校的學(xué)生中隨機(jī)抽取20名,記表示這20名學(xué)生中每周閱讀時(shí)間超過10小時(shí)的人數(shù),求(結(jié)果精確到0.0001)以及的數(shù)學(xué)期望.

參考數(shù)據(jù):,.若,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位安排位員工在春節(jié)期間大年初一到初七值班,每人值班天,若位員工中的甲、乙排在相鄰的兩天,丙不排在初一,丁不排在初七,則不同的安排方案共有_______

查看答案和解析>>

同步練習(xí)冊(cè)答案