如圖,⊥平面,=90°,,點上,點E在BC上的射影為F,且

(1)求證:

(2)若二面角的大小為45°,求的值.

 

【答案】

(1)注意運用,,,確定,

通過,得到; 證出;

(2).

【解析】

試題分析:

解:(1)∵DC⊥平面ABC, ∴DC⊥BC

,∴EF∥CD              1′

又∵,所以 ,   2′

,,,∴,

,∴,即;      5′

,又,于是,      7′

(2)過F作于G點,連GC

,可得,   9′

所以,所以為F-AE-C的平面角,即=45°   11′

設(shè)AC=1,則,,則在RT△AFE中,

在RT△CFG中=45°,則GF=CF,即得到.       14′

(注:若用其他正確的方法請酌情給分)

考點:本題主要考查立體幾何中的平行關(guān)系、垂直關(guān)系,距離與角的計算。

點評:典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,利用向量則能簡化證明過程!皫缀畏ā钡膽(yīng)用,要特別注意空間問題向平面問題轉(zhuǎn)化。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,平面ABEF⊥平面ABCD,四邊形ABEF與ABCD都是直角梯形,∠BAD=∠FAB=90°,BC
.
1
2
AD
,BE
.
1
2
AF
,G,H分別為FA,F(xiàn)D的中點
(Ⅰ)證明:四邊形BCHG是平行四邊形;
(Ⅱ)C,D,F(xiàn),E四點是否共面?為什么?
(Ⅲ)設(shè)AB=BE,證明:平面ADE⊥平面CDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

16、如圖,平面ABCD⊥平面PAD,△APD是直角三角形,∠APD=90°,四邊形ABCD是直角梯形,其中BC∥AD,∠BAD=90°,AD=2BC,O是AD的中點
(1)求證:CD∥平面PBO;
(2)求證:平面PAB⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知如圖,平面ABD⊥平面BCD,∠BAD=∠BCD=90°,∠ABD=45°,∠CBD=30°.
(Ⅰ)異面直線AB、CD所成的角為α,異面直線AC、BD所成的角為β,求證:α=β;
(Ⅱ)求二面角B-AC-D的余弦值的絕對值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平面PCBM⊥平面ABC,∠PCB=90°,PM∥BC,已知AC=PC=PM=1,BC=2,∠ACB=90°.
(1)求證:AC⊥BM;
(2)求證:平面ABM⊥平面ACM;
(3)求二面角M-AC-B的大。

查看答案和解析>>

同步練習(xí)冊答案