已知a,b表示兩條不同的直線,α,β,γ表示三個不同的平面,有下列四個命題:①若α∩β=a,β∩γ=b,且a∥b,則α∥γ;②若a,b相交,且都在α、β外,a∥α,a∥β,b∥α,b∥β,則α∥β;③若α⊥β,α∩β=a,b?β,a⊥b,則b⊥α;④若a?α,b?α,l⊥a,l⊥b,則l⊥α.其中正確命題的序號是( )
A.①②
B.②③
C.③④
D.①④
【答案】分析:因為三個平面可以兩兩相交且交線相互平行,故①錯誤,因為只有a,b相交時結(jié)論才成立,故④錯誤,根據(jù)面面平行的判定定理知②正確,根據(jù)面面垂直的性質(zhì)定理知③正確.
解答:解:因為三個平面可以兩兩相交且交線相互平行,故①錯誤,
因為只有a,b相交時結(jié)論才成立,故④錯誤,
根據(jù)面面平行的判定定理知②正確,
根據(jù)面面垂直的性質(zhì)定理知③正確,
綜上可知只有②③正確,
故選B
點評:本題考查平面的基本性質(zhì)及推論,本題解題的關(guān)鍵是在所給的推理過程中注意不要漏掉一些個別的結(jié)論和一些需要加上才成立的條件
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

12、給定下列四個命題:
(1)給定空間中的直線l及平面α,“直線l與平面α內(nèi)無數(shù)條直線垂直”是“直線l與平面α垂直”的充分不必要條件;
(2)已知α,β表示兩個不同的平面,m為平面α內(nèi)的一條直線,則“α⊥β”是“m⊥β”的必要不充分條件;
(3)已知m,n是兩條不同的直線,α,β是兩個不同的平面,若m∥α,n∥β,m⊥n,則α⊥β;
(4)在三棱柱ABC-A1B1C1中,各棱長相等,側(cè)棱垂直于底面,點D是側(cè)面BB1C1C的中心,則AD與平面BB1C1C所成角的大小是60°.
上述命題中,真命題的序號是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•青浦區(qū)二模)(理)已知A、B是拋物線y2=4x上的相異兩點.
(1)設(shè)過點A且斜率為-1的直線l1,與過點B且斜率為1的直線l2相交于點P(4,4),求直線AB的斜率;
(2)問題(1)的條件中出現(xiàn)了這樣的幾個要素:已知圓錐曲線Γ,過該圓錐曲線上的相異兩點A、B所作的兩條直線l1、l2相交于圓錐曲線Γ上一點;結(jié)論是關(guān)于直線AB的斜率的值.請你對問題(1)作適當推廣,并給予解答;
(3)若線段AB(不平行于y軸)的垂直平分線與x軸相交于點Q(x0,0).若x0=5,試用線段AB中點的縱坐標表示線段AB的長度,并求出中點的縱坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•青浦區(qū)二模)(文)已知A、B是拋物線y2=4x上的相異兩點.
(1)設(shè)過點A且斜率為-1的直線l1,與過點B且斜率為1的直線l2相交于點P(4,4),求直線AB的斜率;
(2)問題(1)的條件中出現(xiàn)了這樣的幾個要素:已知圓錐曲線Γ,過該圓錐曲線上的相異兩點A、B所作的兩條直線l1、l2相交于圓錐曲線Γ上一點;結(jié)論是關(guān)于直線AB的斜率的值.請你對問題(1)作適當推廣,并給予解答;
(3)若線段AB(不平行于y軸)的垂直平分線與x軸相交于點Q(x0,0).若x0>2,試用x0表示線段AB中點的橫坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣西桂林中學高三(上)10月月考數(shù)學試卷(文科)(解析版) 題型:選擇題

已知l,m表示兩條不同的直線,其中m在平面α內(nèi),則“l(fā)⊥m”是“l(fā)⊥α”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源:2009年上海市靜安、楊浦、青浦、寶山區(qū)高考數(shù)學二模試卷(文理合卷)(解析版) 題型:解答題

(理)已知A、B是拋物線y2=4x上的相異兩點.
(1)設(shè)過點A且斜率為-1的直線l1,與過點B且斜率為1的直線l2相交于點P(4,4),求直線AB的斜率;
(2)問題(1)的條件中出現(xiàn)了這樣的幾個要素:已知圓錐曲線Γ,過該圓錐曲線上的相異兩點A、B所作的兩條直線l1、l2相交于圓錐曲線Γ上一點;結(jié)論是關(guān)于直線AB的斜率的值.請你對問題(1)作適當推廣,并給予解答;
(3)若線段AB(不平行于y軸)的垂直平分線與x軸相交于點Q(x,0).若x=5,試用線段AB中點的縱坐標表示線段AB的長度,并求出中點的縱坐標的取值范圍.

查看答案和解析>>

同步練習冊答案