在四棱錐P-ABCD中,底面是邊長為2的菱形,∠DAB=60°,對(duì)角線AC與BD相交于點(diǎn)O,PO⊥平面ABCD,PB與平面ABCD所成的角為60°.

(Ⅰ)若E是PB的中點(diǎn),求異面直線DE與PA所成角的余弦值;

(Ⅱ)求二面角A-PB-D的余弦值.

答案:
解析:

  解:(1)在四棱錐P-ABCD中,由PO⊥平面ABCD,得∠PBO是PB與平面ABCD所成的角,∠PBO=60°

  在Rt△AOB中BO=ABsin30°=1,由PO⊥BO,于是,PO=

  以O(shè)為坐標(biāo)原點(diǎn),射線OB、OC、

  OP分別為x軸、y軸、z軸的正半軸,建立空間直角坐標(biāo)系

  在Rt△AOB中OA=,于是,點(diǎn)A、B、D、P的坐標(biāo)分別是A(0,-,0),B(1,0,0),D(-1,0,0),P(0,0,).

  E是PB的中點(diǎn),則E(,0,)

  于是=(,0,),=(0,,)

  設(shè)的夾角為,有cos

  ∴異面直線DE與PA所成角的余弦值為

  (2)計(jì)算平面APB的一個(gè)法向量為,

  而平面PBD的一個(gè)法向量為,

  故二面角A-PB-D的余弦值為


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知在四棱錐P一ABCD中,底面ABCD是矩形,PA⊥平面ABCD,
PA=AD=1,AB=2,E、F分別是AB、PD的中點(diǎn).
(Ⅰ)求證:AF∥平面PEC;
(Ⅱ)求PC與平面ABCD所成角的正切值;
(Ⅲ)求二面角P-EC-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖.在四棱錐P一ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底    面ABCD,PD=DC=2,E是PC的中點(diǎn).
(1)證明:PA∥平面EDB;
(2)證明:平面PAC⊥平面PDB;
(3)求三梭錐D一ECB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在四棱錐P一ABCD中,二面角P一AD一B為60°,∠PDA=45°,∠DAB=90°,∠PAD=90°,∠ADC=135°,
(Ⅰ)求證:平面PAB⊥平面ABCD;
(Ⅱ)求PD與平面ABCD所成角的正弦值;
(Ⅲ)求二面角P一CD一B的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P一ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點(diǎn).PA=PD=AD=2,點(diǎn)M在線段PC上 PM=
13
PC
(1)證明:PA∥平面MQB;
(2)若平面PAD⊥平面ABCD,求二面角M-BQ-C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)在四棱錐PABCD中,底面ABCD是正方形,側(cè)棱PD與底面ABCD垂直,PD=DC,EPC的中點(diǎn),作EF于點(diǎn)F(Ⅰ)證明PA平面EBD

(Ⅱ)證明PB平面EFD

(Ⅲ)求二面角的余弦值;

查看答案和解析>>

同步練習(xí)冊(cè)答案