【題目】已知直線l:x﹣2y+2m﹣2=0.
(1)求過點(2,3)且與直線l垂直的直線的方程;
(2)若直線l與兩坐標(biāo)軸所圍成的三角形的面積大于4,求實數(shù)m的取值范圍.
【答案】
(1)解:∵直線l:x﹣2y+2m﹣2=0的斜率為 ,
∴與直線l垂直的直線的斜率為﹣2,
因為點(2,3)在該直線上,
所以所求直線方程為y﹣3=﹣2(x﹣2),
故所求的直線方程為2x+y﹣7=0.
(2)直線l與兩坐標(biāo)軸的交點分別為(﹣2m+2,0),(0,m﹣1),
則所圍成的三角形的面積為 ×|﹣2m+2|×|m﹣1|.
由題意可知 ×|﹣2m+2|×|m﹣1|>4,化簡得(m﹣1)2>4,
解得m>3或m<﹣1,
所以實數(shù)m的取值范圍是(﹣∞,﹣1)∪(3,+∞).
【解析】(1)求出直線l的斜率,得到與直線l垂直的直線的斜率,由點斜式可得出直線方程,(2)得出直線l與兩坐標(biāo)軸的交點坐標(biāo),表示出面積公式,解出m的取值范圍.
【考點精析】關(guān)于本題考查的截距式方程,需要了解直線的截距式方程:已知直線與軸的交點為A,與軸的交點為B,其中才能得出正確答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的函數(shù)為上的偶函數(shù),且在區(qū)間上的最大值為10. 設(shè).
⑴ 求函數(shù)的解析式;
⑵ 若不等式在上恒成立,求實數(shù)的取值范圍;
⑶ 是否存在實數(shù),使得關(guān)于的方程有四個不相等的實 數(shù)根?如果存在,求出實數(shù)的范圍,如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某射擊運動員每次擊中目標(biāo)的概率都是0.7.現(xiàn)采用隨機模擬的方法估計該運動員射擊4次,至少擊中2次的概率:先由計算器算出0~9之間取整數(shù)值的隨機數(shù),指定0,1,2表示沒有擊中目標(biāo),3,4,5,6,7,8,9表示擊中目標(biāo);因為射擊4次,故以每4個隨機數(shù)為一組,代表射擊4次的結(jié)果.經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):
5727 0293 7140 9857 0347
4373 8636 9647 1417 4698
0371 6233 2616 8045 6011
3661 9597 7424 6710 4281
據(jù)此估計,該射擊運動員射擊4次至少擊中2次的概率為( )
A. 0.8 B. 0.85 C. 0.9 D. 0.95
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在年初的時候,國家政府工作報告明確提出, 年要堅決打好藍天保衛(wèi)戰(zhàn),加快解決燃煤污染問題,全面實施散煤綜合治理.實施煤改電工程后,某縣城的近六個月的月用煤量逐漸減少, 月至月的用煤量如下表所示:
月份 | ||||||
用煤量(千噸) |
(1)由于某些原因, 中一個數(shù)據(jù)丟失,但根據(jù)至月份的數(shù)據(jù)得出樣本平均值是,求出丟失的數(shù)據(jù);
(2)請根據(jù)至月份的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)現(xiàn)在用(2)中得到的線性回歸方程中得到的估計數(shù)據(jù)與月月的實際數(shù)據(jù)的誤差來判斷該地區(qū)的改造項目是否達到預(yù)期,若誤差均不超過,則認為該地區(qū)的改造已經(jīng)達到預(yù)期,否則認為改造未達預(yù)期,請判斷該地區(qū)的煤改電項目是否達預(yù)期?
(參考公式:線性回歸方程,其中 )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若三邊的長為連續(xù)的三個正整數(shù),且A>B>C,3b=20acos A,則sin A:sin B:sin C為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓O:x2+y2=4與x軸的正半軸交于點A,以A為圓心的圓A:(x﹣2)2+y2=r2(r>0)與圓O交于B,C兩點.
(1)若直線l與圓O切于第一象限,且與坐標(biāo)軸交于D,E,當(dāng)線段DE長最小時,求直線l的方程;
(2)設(shè)P是圓O上異于B,C的任意一點,直線PB、PC分別與x軸交于點M和N,問OMON是否為定值?若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個關(guān)于圓錐曲線的命題中:
①雙曲線 與橢圓 有相同的焦點;
②以拋物線的焦點弦(過焦點的直線截拋物線所得的線段)為直徑的圓與拋物線的準(zhǔn)線是相切的;
③設(shè)A、B為兩個定點,k為常數(shù),若|PA|﹣|PB|=k,則動點P的軌跡為雙曲線;
④過定圓C上一點A作圓的動弦AB,O為原點,若 則動點P的軌跡為橢圓.其中正確的個數(shù)是( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:x2﹣2x﹣8≤0,q:x2+mx﹣6m2≤0,m>0.
(1)若q是p的必要不充分條件,求m的取值范圍;
(2)若p是q的充分不必要條件,求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com