已知空間向量=(1,0),=(2,k),,則k的值為( )
A.
B.
C.
D.
【答案】分析:利用向量數(shù)量積的坐標(biāo)形式求出兩個(gè)向量的數(shù)量積;利用向量模的坐標(biāo)公式求出兩個(gè)向量的模;利用向量的模夾角形式的數(shù)量積公式表示夾角余弦,列出方程,求出k的值.
解答:解:,,


解得k=
故選C.
點(diǎn)評(píng):本題考查向量的坐標(biāo)形式的數(shù)量積公式、模,夾角形式的數(shù)量積公式、利用數(shù)量積公式求夾角余弦、考查向量模的坐標(biāo)公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知空間向量
a
=(1,-λ,λ-1),
b
=(-λ,1-λ,λ-1)的夾角為鈍角,則實(shí)數(shù)λ的取值范圍是
2-
2
2
<λ<
2+
2
2
2-
2
2
<λ<
2+
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知空間向量
a
=(sinα-1,1)
b
=(1,1-cosα)
,
a
b
=
1
5
,α∈(0,
π
2
).
(1)求sin2α及sinα,cosα的值;
(2)設(shè)函數(shù)f(x)=5cos(2x-α)+cos2x(x∈R),求f(x)的最小正周期和圖象的對(duì)稱中心坐標(biāo);
(3)求函數(shù)f(x)在區(qū)間[-
11π
24
,-
24
]
上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知空間向量
a
=(1,1,0),
b
=(-1,0,2),則與向量
a
+
b
方向相反的單位向量
e
的坐標(biāo)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知空間向量
a
=(-1,2,4),
b
=(x,-1,-2),并且
a
b
,則x的值為( 。
A、10
B、
1
2
C、-10
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知空間向量
a
=(1,n,2),
b
=(-2,1,2),若2
a
-
b
b
垂直,則|
a
|等于( 。
A、
5
3
2
B、
21
2
C、
37
2
D、
3
5
2

查看答案和解析>>

同步練習(xí)冊(cè)答案