在200~300之間(包括200和300),能被2或3整除的數(shù)共有________個(gè).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

“地溝油”嚴(yán)重危害了人民群眾的身體健康,某企業(yè)在政府部門的支持下,進(jìn)行技術(shù)攻關(guān),新上了一種從“食品殘?jiān)敝刑釤挸錾锊裼偷捻?xiàng)目.經(jīng)測(cè)算,該項(xiàng)目處理成本y(元)與月處理量x(噸)之間的函數(shù)可以近似的表示為:y=
1
3
x3-80x2+5040x,x∈[120,144)
1
2
x2-200x+80000,x∈[144,500)
,且每處理一噸“食品殘?jiān)保傻玫侥芾玫纳锊裼蛢r(jià)值為200元,若該項(xiàng)目不獲利,政府將補(bǔ)貼.
(1)當(dāng)x∈[200,300)時(shí),判斷該項(xiàng)目能否獲利?如果獲利,求出最大利潤(rùn);如果不獲得,則政府每月至少需要補(bǔ)貼多少元才能使該項(xiàng)目不虧損;
(2)該項(xiàng)目每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司用480萬元購得某種產(chǎn)品的生產(chǎn)技術(shù)后,再次投入資金1520萬元購買生產(chǎn)設(shè)備,進(jìn)行該產(chǎn)品的生產(chǎn)加工.已知生產(chǎn)這種產(chǎn)品每件還需成本費(fèi)40元,經(jīng)過市場(chǎng)調(diào)研發(fā)現(xiàn):該產(chǎn)品的銷售單價(jià)定在100元到300元之間較為合理.當(dāng)銷售單價(jià)定為100元時(shí),年銷售量為20萬件;當(dāng)銷售單價(jià)超過100元,但不超過200元時(shí),每件產(chǎn)品的銷售價(jià)格每增加10元,年銷售量將減少0.8萬件;當(dāng)銷售單價(jià)超過200元,但不超過300元時(shí),每件產(chǎn)品的銷售價(jià)格在200元的基礎(chǔ)上,每增加10元,年銷售量將再減少1萬件.設(shè)銷售單價(jià)為x(元),年銷售量為y(萬件),年獲利為w(萬元).
(1)直接寫出y與x之間的函數(shù)關(guān)系式;
(2)求第一年的年獲利w與x之間的函數(shù)關(guān)系式,并說明投資的第一年,該公司是贏利還是虧損?若贏利,最大利潤(rùn)是多少?若虧損,最少虧損是多少?(
195225
=1521)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•普陀區(qū)二模)經(jīng)濟(jì)學(xué)中有一個(gè)用來權(quán)衡企業(yè)生產(chǎn)能力(簡(jiǎn)稱“產(chǎn)能”)的模型,稱為“產(chǎn)能邊界”.它表示一個(gè)企業(yè)在產(chǎn)能最大化的條件下,在一定時(shí)期內(nèi)所能生產(chǎn)的幾種產(chǎn)品產(chǎn)量的各種可能的組合.例如,某企業(yè)在產(chǎn)能最大化條件下,一定時(shí)期內(nèi)能生產(chǎn)A產(chǎn)品x臺(tái)和B產(chǎn)品y臺(tái),則它們之間形成的函數(shù)y=f(x)就是該企業(yè)的“產(chǎn)能邊界函數(shù)”.現(xiàn)假設(shè)該企業(yè)的“產(chǎn)能邊界函數(shù)”為y=15
1600-2x
(如圖).
(1)試分析該企業(yè)的產(chǎn)能邊界,分別選用①、②、③中的一個(gè)序號(hào)填寫下表:
點(diǎn)Pi(x,y)對(duì)應(yīng)的產(chǎn)量組合 實(shí)際意義
P1(350,450)
P2(200,300)
P3(500,400)
P4(408,420)
①這是一種產(chǎn)能未能充分利用的產(chǎn)量組合;
②這是一種生產(chǎn)目標(biāo)脫離產(chǎn)能實(shí)際的產(chǎn)量組合;
③這是一種使產(chǎn)能最大化的產(chǎn)量組合.
(2)假設(shè)A產(chǎn)品每臺(tái)利潤(rùn)為a(a>0)元,B產(chǎn)品每臺(tái)利潤(rùn)為A產(chǎn)品每臺(tái)利潤(rùn)的2倍.在該企業(yè)的產(chǎn)能邊界條件下,試為該企業(yè)決策,應(yīng)生產(chǎn)A產(chǎn)品和B產(chǎn)品各多少臺(tái)才能使企業(yè)從中獲得最大利潤(rùn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某企業(yè)為了保護(hù)環(huán)境,發(fā)展低碳經(jīng)濟(jì),在國家科研部門的支持下,進(jìn)行技術(shù)攻關(guān),新上了一項(xiàng)把二氧化碳處理轉(zhuǎn)化為一種可利用的化工產(chǎn)品的項(xiàng)目,經(jīng)測(cè)算,該項(xiàng)目月處理成本y(元)與月處理量z(噸)之間的函數(shù)關(guān)系可近似的表示為:y=
1
3
x3-80x2+5040x,x∈[120,144)
1
2
x2-200x+80000,x∈[144,500)

且每處理一二氧化碳得到可利用的化工產(chǎn)品價(jià)值為200元,若該項(xiàng)目不獲利,虧損數(shù)額國家將給予補(bǔ)償.
(I)當(dāng)x∈[200,300]時(shí),判斷該項(xiàng)目能否獲利?如果虧損,則國家每月補(bǔ)償數(shù)額的范圍是多少?
(Ⅱ)該項(xiàng)目每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?

查看答案和解析>>

同步練習(xí)冊(cè)答案