【題目】已知函數(shù)在上的最大值為3,則實數(shù)的取值范圍是( )
A. B. C. D.
【答案】C
【解析】
運用導數(shù),判斷函數(shù)在x≤0時f(x)的單調性,求得當x∈[﹣2,0]上的最大值為3; 欲使得函數(shù)f(x)在[﹣2,2]上的最大值為3,則當x=2時,e2a的值必須小于等于3,從而解得a的范圍.
由題意,當x≤0時,f(x)=2x3+3x2+2,可得f′(x)=6x2+6x,
解得函數(shù)f(x)在[﹣1,0]上導數(shù)為負,在(﹣∞,﹣1]上導數(shù)為正,
故函數(shù)f(x)在[﹣2,0]上的最大值為f(﹣1)=3;
要使函數(shù)f(x)在[﹣2,2]上的最大值為3,
則當時,的值必須小于等于3,
又單調,即當x=2時,e2a的值必須小于等于3,
即e2a≤3,
解得a∈.
故選:C.
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)2007年至2011年農村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 |
年份代號t | 1 | 2 | 3 | 4 | 5 |
人均純收入y | 3.1 | 3.6 | 3.9 | 4.4 | 5 |
(1)求y關于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2011年該地區(qū)農村居民家庭人均純收入的變化情況,并預測該地區(qū)2015年農村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“勾股定理”在西方被稱為“畢達哥拉斯定理”,三國時期吳國的數(shù)學家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結合的方法給出了勾股定理的詳細證明.如圖所示的“勾股圓方圖”中,四個相同的直角三角形與中間的小正方形拼成一個大正方形,若直角三角形的直角邊的邊長分別是3和4,在繪圖內隨機取一點,則此點取自小正方形的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某醫(yī)藥公司研發(fā)一種新的保健產(chǎn)品,從一批產(chǎn)品中抽取200盒作為樣本,測量產(chǎn)品的一項質量指標值,該指標值越高越好.由測量結果得到如下頻率分布直方圖:
(Ⅰ)求,并試估計這200盒產(chǎn)品的該項指標的平均值;
(Ⅱ)① 用樣本估計總體,由頻率分布直方圖認為產(chǎn)品的質量指標值服從正態(tài)分布,計算該批產(chǎn)品指標值落在上的概率;參考數(shù)據(jù):附:若,則,.
②國家有關部門規(guī)定每盒產(chǎn)品該項指標不低150均為合格,且按指標值的從低到高依次分為:合格、優(yōu)良、優(yōu)秀三個等級,其中為優(yōu)良,不高于180為合格,不低于220為優(yōu)秀,在①的條件下,設公司生產(chǎn)該產(chǎn)品1萬盒的成本為15萬元,市場上每盒該產(chǎn)品的等級售價(單位:元)如圖表,求該公司每萬盒的平均利潤.
等級 | 合格 | 優(yōu)良 | 優(yōu)秀 |
價格 | 10 | 20 | 30 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為比較甲、乙兩名高中學生的數(shù)學素養(yǎng),對課程標準中規(guī)定的數(shù)學六大素養(yǎng)進行指標測驗(指標值滿分為100分,分值高者為優(yōu)),根據(jù)測驗情況繪制了如圖所示的六大素養(yǎng)指標雷達圖,則下面敘述不正確的是( )
A.甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙B.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學建模素養(yǎng)
C.甲的六大素養(yǎng)整體水平優(yōu)于乙D.甲的六大素養(yǎng)中數(shù)學運算最強
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】端午節(jié)(每年農歷五月初五),是中國傳統(tǒng)節(jié)日,有吃粽子的習俗.某超市在端午節(jié)這一天,每售出kg粽子獲利潤元,未售出的粽子每kg虧損元.根據(jù)歷史資料,得到銷售情況與市場需求量的頻率分布表,如下表所示.該超市為今年的端午節(jié)預購進了kg粽子.以(單位:kg,)表示今年的市場需求量,(單位:元)表示今年的利潤.
市場需求量(kg) | |||||
頻率 | 0.1 | 0.2 | 0.3 | 0.25 | 0.15 |
(1)將表示為的函數(shù);
(2)在頻率分布表的市場需求量分組中,以各組的區(qū)間中間值代表該組的各個值,需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中間值的概率(例如:若需求量,則取,且的概率等于需求量落入的頻率),求的數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】是否存在互不相同的質數(shù)p、q、r、s,使得它們的和為640,且和都是完全平方數(shù)?若存在,求p、q、r、s的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有9名學生在同一間教室參加一次數(shù)學競賽,座位排列成3行3列,用的方格棋盤表示,其中,每個方格代表一個座位為了避免舞弊,采用A、B、C三種類型的試卷,要使任何兩個相鄰的座位(有公共邊的兩個方格)發(fā)放的試卷類型不同.則符合條件的發(fā)放試卷的方法共有________種.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com