已知A(,),B(,)是函數(shù)的圖象上的任意兩點(diǎn)(可以重合),點(diǎn)M在直線上,且.
(1)求+的值及+的值
(2)已知,當(dāng)時(shí),+++,求;
(3)在(2)的條件下,設(shè)=,為數(shù)列{}的前項(xiàng)和,若存在正整數(shù)、,
使得不等式成立,求的值.
(1)+. (2)="1-n."  (3)c="1," m=1.

試題分析:(Ⅰ)∵點(diǎn)M在直線x=上,設(shè)M.
,即,,
+="1."
① 當(dāng)=時(shí),=+=;
② 當(dāng)時(shí),,
+=+===
綜合①②得,+.      
(Ⅱ)由(Ⅰ)知,當(dāng)+=1時(shí), +
,k=.
n≥2時(shí),+++ ,      ①
 ,      ②
②得,2=-2(n-1),則=1-n. 
當(dāng)n=1時(shí),=0滿足="1-n." ∴="1-n."        
(Ⅲ)===1++=.
.
=2-,=-2+=2-,∴,、m為正整
數(shù),∴c=1,當(dāng)c=1時(shí),,
∴1<<3,
∴m=1.       
向量.
點(diǎn)評(píng):本題考查分段函數(shù),數(shù)列的求和,數(shù)列遞推式,相等向量與相反向量,考查學(xué)生分析
問(wèn)題解決問(wèn)題的能力,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知雙曲線與橢圓有相同的焦點(diǎn),點(diǎn)、分別是橢圓的右、右頂點(diǎn),若橢圓經(jīng)過(guò)點(diǎn)
(1)求橢圓的方程;
(2)已知是橢圓的右焦點(diǎn),以為直徑的圓記為,過(guò)點(diǎn)引圓的切線,求此切線的方程;
(3)設(shè)為直線上的點(diǎn),是圓上的任意一點(diǎn),是否存在定點(diǎn),使得?若存在,求出定點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知雙曲線的兩個(gè)焦點(diǎn)恰為橢圓的兩個(gè)頂點(diǎn),且離心率為2,則該雙曲線的標(biāo)準(zhǔn)方程為    (  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知雙曲線的中心為原點(diǎn),的焦點(diǎn),過(guò)的直線相交于兩點(diǎn),且的中點(diǎn)為,則的方程為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知雙曲線的一條漸近線的斜率為,且右焦點(diǎn)與拋物線的焦點(diǎn)重合,則該雙曲線的方程為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

雙曲線=1(a>0,b>0)的離心率為2,坐標(biāo)原點(diǎn)到直線AB的距離為,其中A(0,-b),B(a,0).
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)F是雙曲線的右焦點(diǎn),直線l過(guò)點(diǎn)F且與雙曲線的右支交于不同的兩點(diǎn)P、Q,點(diǎn)M為線段PQ的中點(diǎn).若點(diǎn)M在直線x=-2上的射影為N,滿足·=0,且||=10,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓,左、右兩個(gè)焦點(diǎn)分別為、,上頂點(diǎn),為正三角形且周長(zhǎng)為6.
(1)求橢圓的標(biāo)準(zhǔn)方程及離心率;
(2)為坐標(biāo)原點(diǎn),是直線上的一個(gè)動(dòng)點(diǎn),求的最小值,并求出此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知為橢圓的左、右焦點(diǎn),是橢圓上一點(diǎn),若。
(1)求橢圓方程;
(2)若的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在拋物線上,橫坐標(biāo)為的點(diǎn)到焦點(diǎn)的距離為,則的值為(   )
A.0.5B.1C.2D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案