如圖,直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=,AD=BD:EC丄底面ABCD,F(xiàn)D丄底面ABCD 且有EC=FD=2.
(I )求證:AD丄BF;
(II )若線段EC的中點為M,求直線AM與平面ABEF所成角的正弦值.

【答案】分析:(I)梯形ABCD中,根據(jù)勾股定理和等腰三角形的判定,可得∠ADB=90°即AD⊥BD,結合AD⊥DF利用線面垂直的判定定理,證出AD⊥平面BDF,進而可得AD丄BF;
(II)過點M作MN⊥BE,垂足為N,連接NA,AC.利用線面垂直的判定與性質,證出MN⊥平面ABEF,從而得到∠MAN就是直線AM與平面ABEF所成角.Rt△BCE中利用相似算出MN=,分別在Rt△ABC、Rt△ACM中運用勾股定理,算出AM=.最后在Rt△MAN中利用正弦的定義,即可算出直線AM與平面ABEF所成角的正弦值等于
解答:解:(I)∵BC⊥DC,BC=CD=
∴BD==2,且△BCD是等腰直角三角形,∠CDB=∠CBD=45°
∵平面ABCD中,AB∥DC,∴∠DBA=∠CBD=45°
∵AD=BD,可得∠DBA=∠BAD=45°
∴∠ADB=90°,即AD⊥BD
∵FD丄底面ABCD,AD?底面ABCD,∴AD⊥DF
∵BD、DF是平面BDF內的相交直線,∴AD⊥平面BDF
∵BF?平面BDF,∴AD丄BF
(II)如圖,過點M作MN⊥BE,垂足為N,連接NA,AC
∵AB⊥BC,AB⊥EC,BC∩EC=E,∴AB⊥平面BEC
∵MN?平面BEC,∴AB⊥MN,
結合MN⊥BE且BE∩AB=B,可得MN⊥平面ABEF
∴AN是AM在平面ABEF內的射影,可得∠MAN就是直線AM與平面ABEF所成角
∵Rt△ABC中,AC==,∴Rt△ACM中,AM==
∵△EMN∽△EBC,∴,可得MN=
因此,在Rt△MAN中,sin∠MAN==
即直線AM與平面ABEF所成角的正弦值是
點評:本題給出由四棱錐與三棱錐組合而成的幾何體,求證線線垂直并求直線與平面所成角正弦值,著重考查了線面垂直的判定與性質和直線與平面所成角的求法等知識,屬于中檔題..
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2014•宜賓一模)如圖,直角梯形ABCD中,∠ABC=∠BAD=90°,AB=BC且△ABC的面積等于△ADC面積的
12
.梯形ABCD所在平面外有一點P,滿足PA⊥平面ABCD,PA=AB.
(1)求證:平面PCD⊥平面PAC;
(2)側棱PA上是否存在點E,使得BE∥平面PCD?若存在,指出點E的位置并證明;若不存在,請說明理由.
(3)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•惠州一模)如圖,直角梯形ACDE與等腰直角△ABC所在平面互相垂直,F(xiàn)為BC的中點,∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2
(1)求證:AF∥平面BDE;
(2)求四面體B-CDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江西省南昌市高三第二次模擬測試理科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分12分)如圖:直角梯形ABCD中,AD∥BC,∠ABC=90°,E、F分別是邊AD和BC上的點,且EF∥AB,AD =2AE =2AB = 4AF= 4,將四邊形EFCD沿EF折起使AE=AD.

(1)求證:AF∥平面CBD;

(2)求平面CBD與平面ABFE夾角的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013年廣東省惠州市高考數(shù)學一模試卷(文科)(解析版) 題型:解答題

如圖,直角梯形ACDE與等腰直角△ABC所在平面互相垂直,F(xiàn)為BC的中點,∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2
(1)求證:AF∥平面BDE;
(2)求四面體B-CDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年寧夏銀川市賀蘭一中高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

如圖,直角梯形ABCD中,∠ABC=∠BAD=90°,AB=BC且△ABC的面積等于△ADC面積的.梯形ABCD所在平面外有一點P,滿足PA⊥平面ABCD,PA=PB.
(1)求證:平面PCD⊥平面PAC;
(2)側棱PA上是否存在點E,使得BE∥平面PCD?若存在,指出點E的位置并證明;若不存在,請說明理由.
(3)求二面角A-PD-C的余弦值.

查看答案和解析>>

同步練習冊答案