【題目】已知點A(0,﹣1)是拋物線C:x2=2py(p>0)準(zhǔn)線上的一點,點F是拋物線C的焦點,點P在拋物線C上且滿足|PF|=m|PA|,當(dāng)m取最小值時,點P恰好在以原點為中心,F(xiàn)為焦點的雙曲線上,則此雙曲線的離心率為(
A.
B.
C. +1
D. +1

【答案】C
【解析】解:點A(0,﹣1)是拋物線C:x2=2py(p>0)準(zhǔn)線上的一點,可得p=2, 拋物線的標(biāo)準(zhǔn)方程為x2=4y,
則拋物線的焦點為F(0,1),準(zhǔn)線方程為y=﹣1,
過P作準(zhǔn)線的垂線,垂足為N,
則由拋物線的定義可得|PN|=|PF|,
∵|PF|=m|PA|,∴|PN|=m|PA|,則 =m,
設(shè)PA的傾斜角為α,則sinα=m,
當(dāng)m取得最小值時,sinα最小,此時直線PA與拋物線相切,
設(shè)直線PA的方程為y=kx﹣1,代入x2=4y,
可得x2=4(kx﹣1),
即x2﹣4kx+4=0,
∴△=16k2﹣16=0,∴k=±1,
∴P(2,1),
∴雙曲線的實軸長為|PA|﹣|PF|=2( ﹣1),
∴雙曲線的離心率為 = +1.
故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京某附屬中學(xué)為了改善學(xué)生的住宿條件,決定在學(xué)校附近修建學(xué)生宿舍,學(xué)校總務(wù)辦公室用1000萬元從政府購得一塊廉價土地,該土地可以建造每層1000平方米的樓房,樓房的每平方米建筑費用與建筑高度有關(guān),樓房每升高一層,整層樓每平方米建筑費用提高萬元,已知建筑第5層樓房時,每平方米建筑費用為萬元.

若學(xué)生宿舍建筑為x層樓時,該樓房綜合費用為y萬元,綜合費用是建筑費用與購地費用之和,寫出的表達(dá)式;

為了使該樓房每平方米的平均綜合費用最低,學(xué)校應(yīng)把樓層建成幾層?此時平均綜合費用為每平方米多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}中,a3=9,a5=17,記數(shù)列 的前n項和為Sn , 若 ,對任意的n∈N*成立,則整數(shù)m的最小值為(
A.5
B.4
C.3
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)fx)的單調(diào)遞增區(qū)間;

2)將函數(shù)fx)的圖象向右平移個單位,再將所得圖象的橫坐標(biāo)縮短到原來的一半,縱坐標(biāo)不變,得到新的函數(shù)ygx),當(dāng)時,求gx)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某公司舉行的年終慶典活動中,主持人利用隨機抽獎軟件進(jìn)行抽獎:由電腦隨機生成一張如圖所示的33表格,其中1格設(shè)獎300元,4格各設(shè)獎200元,其余4格各設(shè)獎100元,點擊某一格即顯示相應(yīng)金額.某人在一張表中隨機不重復(fù)地點擊3格,記中獎的總金額為X元.

1)求概率;

2)求的概率分布及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=1,AD=2,動點P在以點C為圓心且與BD相切的圓上.若= + ,則+的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了了解高中生的藝術(shù)素養(yǎng),從學(xué)校隨機選取男,女同學(xué)各50人進(jìn)行研究,對這100名學(xué)生在音樂、美術(shù)、戲劇、舞蹈等多個藝術(shù)項目進(jìn)行多方位的素質(zhì)測評,并把調(diào)查結(jié)果轉(zhuǎn)化為個人的素養(yǎng)指標(biāo),制成下圖,其中“*”表示男同學(xué),“+”表示女同學(xué).

,則認(rèn)定該同學(xué)為“初級水平”,若,則認(rèn)定該同學(xué)為“中級水平”,若,則認(rèn)定該同學(xué)為“高級水平”;若,則認(rèn)定該同學(xué)為“具備一定藝術(shù)發(fā)展?jié)撡|(zhì)”,否則為“不具備明顯藝術(shù)發(fā)展?jié)撡|(zhì)”.

(I)從50名女同學(xué)的中隨機選出一名,求該同學(xué)為“初級水平”的概率;

(Ⅱ)從男同學(xué)所有“不具備明顯藝術(shù)發(fā)展?jié)撡|(zhì)的中級或高級水平”中任選2名,求選出的2名均為“高級水平”的概率;

(Ⅲ)試比較這100名同學(xué)中,男、女生指標(biāo)的方差的大小(只需寫出結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】商丘市大型購物中心——萬達(dá)廣場將于201876日全面開業(yè),目前正處于試營業(yè)階段,某按摩椅經(jīng)銷商為調(diào)查顧客體驗按摩椅的時間,隨機調(diào)查了50名顧客,體驗時間(單位:分鐘)落在各個小組的頻數(shù)分布如下表:

體驗

時間

頻數(shù)

(1)求這名顧客體驗時間的樣本平均數(shù),中位數(shù),眾數(shù);

(2)已知體驗時間為的顧客中有2名男性,體驗時間為的顧客中有3名男性,為進(jìn)一步了解顧客對按摩椅的評價,現(xiàn)隨機從體驗時間為的顧客中各抽一人進(jìn)行采訪,求恰抽到一名男性的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為實數(shù))的圖像在點處的切線方程為.

(1)求實數(shù)的值及函數(shù)的單調(diào)區(qū)間;

(2)設(shè)函數(shù),證明時, .

查看答案和解析>>

同步練習(xí)冊答案