正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn滿足:Sn2+2nSn-22n+1=0.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=
2n-1
(Sn-1)(an-1)
,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,證明:對(duì)于任意的n∈N*,都有Tn<2.
考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件推導(dǎo)出Sn=2n,由此能求出an=
2,n=1
2n-1,n≥2

(2)當(dāng)n=1時(shí),T1=b1=1<2.當(dāng)n≥2時(shí),bn=
2n-1
(2n-1)(2n-1-1)
=
1
2n-1-1
-
1
2n-1
,由此利用裂項(xiàng)求和法能證明對(duì)于任意的n∈N*,都有Tn<2.
解答: (1)解:Sn2+2nSn-22n+1=0,
(Sn-2n)(Sn+2n+1)=0,解得Sn=2n
當(dāng)n=1時(shí),a1=S1=2.
當(dāng)n≥2時(shí),an=Sn-Sn-1=2n-2n-1=2n-1,
∵n=1不適合,
an=
2,n=1
2n-1,n≥2

(2)證明:當(dāng)n=1時(shí),b1=
21-1
(S1-1)(a1-1)
=
1
(2-1)2
=1
,T1=b1=1<2.
當(dāng)n≥2時(shí),bn=
2n-1
(2n-1)(2n-1-1)
=
1
2n-1-1
-
1
2n-1
Tn=1+(
1
2-1
-
1
22-1
)+(
1
22-1
-
1
23-1
)+…+(
1
2n-1-1
-
1
2n-1
)
=2-
1
2n-1
<2

綜上,對(duì)于任意的n∈N*,都有Tn<2.
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式的求法,考查不等式的證明,解題時(shí)要認(rèn)真審題,注意裂項(xiàng)求和法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx,g(x)=-
a
x
(a>0),設(shè)F(x)=f(x)+g(x)
(Ⅰ)求函數(shù)F(x)的單調(diào)區(qū)間
(Ⅱ)若以函數(shù)y=F(x)(x∈(0,3])圖象上任意一點(diǎn)P(x0,y0)為切點(diǎn)的切線的斜率k≤
1
2
恒成立,求實(shí)數(shù)a的最小值
(Ⅲ)是否存在實(shí)數(shù)m,使得函數(shù)y=g(
2a
x2+1
)+m-1的圖象與函數(shù)y=f(1+x2)的圖象恰有四個(gè)不同交點(diǎn)?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,點(diǎn)M(sin2θ,1)在角α的終邊上,點(diǎn)N(1,-2cos2θ)在角β的終邊上,且
OM
ON
=-
3
2

(1)求點(diǎn)M和N的坐標(biāo);
(2)求tan(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)定義在(0,+∞)上的函數(shù)f(x)滿足下面三個(gè)條件:①f(2)=0;②對(duì)于任意正實(shí)數(shù)a,b都有f(ab)=f(a)+f(b)-1;③當(dāng)x>1時(shí),總有f(x)<1.
(1)求f(1)及f(
1
2
)的值;
(2)求證f(x)在(0,+∞)上是減函數(shù).
(3)求不等式f(x-1)+f(x-2)<1的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,已知曲線C的參數(shù)方程為
x=2cosα
y=sinα
(α為參數(shù)).以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ-
π
4
)=2
2

(Ⅰ)求直線l的直角坐標(biāo)方程;
(Ⅱ)點(diǎn)P為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn=an+1-2n+1+1,n∈N*,且a1=1
(1)證明數(shù)列{
an
2n
}是等差數(shù)列;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在某次數(shù)學(xué)考試中,從高一年級(jí)300名男生和300名女生中,各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),作出莖葉圖如圖所示:
(1)根據(jù)樣本統(tǒng)計(jì)結(jié)果,估計(jì)全年級(jí)90分以上的共有多少人?
(2)若記不低于90分者為優(yōu)秀,則在抽取的樣本里不低于86分的男生和女生中各選一人,求兩人均為優(yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察下列式子:1+
1
22
3
2
,1+
1
22
+
1
32
5
3
,1+
1
22
+
1
32
+
1
42
7
4
,…,根據(jù)以上式子可以猜想1+
1
22
+
1
32
+…+
1
20142
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-ax2+x有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案