2.關(guān)于x、y的二元一次方程組$\left\{\begin{array}{l}x+5y=0\\ 2x+3y=4\end{array}\right.$的系數(shù)行列式D為( 。
A.$|{\begin{array}{l}0&5\\ 4&3\end{array}}|$B.$|{\begin{array}{l}1&0\\ 2&4\end{array}}|$C.$|{\begin{array}{l}1&5\\ 2&3\end{array}}|$D.$|{\begin{array}{l}6&0\\ 5&4\end{array}}|$

分析 利用線性方程組的系數(shù)行列式的定義直接求解.

解答 解:關(guān)于x、y的二元一次方程組$\left\{\begin{array}{l}x+5y=0\\ 2x+3y=4\end{array}\right.$的系數(shù)行列式:
D=$|\begin{array}{l}{1}&{5}\\{2}&{3}\end{array}|$.
故選:C.

點(diǎn)評(píng) 本題考查線性方程組的系數(shù)行列式的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意線性方程組的系數(shù)行列式的定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.從a,b,c,d,e這5個(gè)元素中取出4個(gè)放在四個(gè)不同的格子中,且元素b不能放在第二個(gè)格子中,問(wèn)共有96種不同的放法.(用數(shù)學(xué)作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某地方政府欲將一塊如圖所示的直角梯形ABCD空地改建為健身娛樂(lè)廣場(chǎng),已知AD∥BC,AD⊥AB,AD=2BC=2$\sqrt{3}$百米,AB=3百米,廣場(chǎng)入口P在AB上,且AP=2BP,根據(jù)規(guī)劃,過(guò)點(diǎn)P鋪設(shè)兩條互相垂直的筆直小路PM、PN(小路寬度不計(jì)),點(diǎn)M、N分別在邊AD、BC上(包含端點(diǎn)),△PAM區(qū)域擬建為跳舞健身廣場(chǎng),△PBN區(qū)域擬建為兒童樂(lè)園,其他區(qū)域鋪設(shè)綠化草坪,設(shè)∠APM=θ.
(1)求綠化草坪面積的最大值;
(2)現(xiàn)擬將兩條小路PN、PN進(jìn)行不同風(fēng)格的美化,小路PM的美化費(fèi)用為每百米1萬(wàn)元,小路PN的美化費(fèi)用為每百米2萬(wàn)元,試確定點(diǎn)M,N的位置,使得小路PM,PN的總美化費(fèi)用最低,并求出最低費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知數(shù)列{an}前n項(xiàng)和為Sn
(1)若Sn=2n-1,求數(shù)列{an}的通項(xiàng)公式;
(2)若a1=$\frac{1}{2}$,Sn=anan+1,an≠0,求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)無(wú)窮數(shù)列{an}是各項(xiàng)都為正數(shù)的等差數(shù)列,是否存在無(wú)窮等比數(shù)列{bn},使得an+1=anbn恒成立?若存在,求出所有滿足條件的數(shù)列{bn}的通項(xiàng)公式;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知向量$\overrightarrow{a}$,$\overrightarrow$的夾角為60°,且|$\overrightarrow{a}$|=|$\overrightarrow$|=1,則|$\overrightarrow{a}$+$\overrightarrow$|等于( 。
A.3B.2C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,x≤1}\\{2+lo{g}_{3}x,x>1}\end{array}\right.$,若f[f(0)+f(m)]=3,則m=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知△ABC中,∠BAC=60°,AB=4,AC=3,若E在線段BC上,且BE=2EC,求∠EAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.以直角坐標(biāo)系xOy的坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t+4\sqrt{2}}\end{array}\right.$(t為參數(shù)),圓C的極坐標(biāo)方程為ρ=2cos(θ+$\frac{π}{4}$).
(1)求圓C的直角坐標(biāo);
(2)試判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且a=3,c=1,$B=\frac{π}{3}$,則b的值為$\sqrt{7}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案