15.《數(shù)書九章》是中國南宋時期杰出數(shù)學家秦九韶的著作,全書十八卷共八十一個問題,分為九類,每類九個問題,《數(shù)書九章》中記錄了秦九昭的許多創(chuàng)造性成就,其中在卷五“三斜求職”中提出了已知三角形三邊a,b,c求面積的公式,這與古希臘的海倫公式完成等價,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減上,余四約之,為實,一為從隅,開平方得積.”若把以上這段文字寫成公式,即S=$\sqrt{\frac{1}{4}[{c^2}{a^2}-{{(\frac{{{c^2}+{a^2}-{b^2}}}{2})}^2}]}$,現(xiàn)有周長為10+2$\sqrt{7}$的△ABC滿足sinA:sinB:sinC=2:3:$\sqrt{7}$,則用以上給出的公式求得△ABC的面積為( 。
A.$6\sqrt{3}$B.$4\sqrt{7}$C.$8\sqrt{7}$D.12

分析 由正弦定理得三角形三邊之比,由周長求出三邊,代入公式即可.

解答 解:∵sinA:sinB:sinC=2:3:$\sqrt{7}$,則a:b:c=2:3:$\sqrt{7}$,
∵△ABC周長為10+2$\sqrt{7}$,即a+b+c=10+2$\sqrt{7}$,
∴a=4,b=6,c=2$\sqrt{7}$,
所以S=$\sqrt{\frac{1}{4}[{c^2}{a^2}-{{(\frac{{{c^2}+{a^2}-{b^2}}}{2})}^2}]}$=6$\sqrt{3}$,
故選:A

點評 本題考查了數(shù)學文化,正弦定理,三角形面積計算,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.求值$\frac{1+{i}^{3n}+{i}^{5n}+…+{i}^{25n}}{1•{i}^{3n}•{i}^{5n}•…•{i}^{25n}}$(n∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在區(qū)間[1,5]和[2,4]上分別各取一個數(shù),記為m和n,則方程$\frac{x^2}{m^2}+\frac{y^2}{n^2}=1$表示焦點在x軸上的橢圓的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.運行如圖所示的程序框圖,輸出的S值等于$\frac{{{2^{10}}-1}}{{{2^{10}}}}$,則判斷框內(nèi)可以填( 。
A.k≤8?B.k≤9?C.k≤10?D.k≤11?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{3}-\frac{{\sqrt{3}}}{2}t\\ y=1+\frac{1}{2}t\end{array}\right.$(t為參數(shù)),以坐標原點O為極點,以x軸正半軸為極軸,建立極坐標系,圓C的極坐標方程為$ρ=4cos(θ-\frac{π}{6})$.
(1)求圓C的直角坐標方程;
(2)若P(x,y)是直線l與圓面$ρ≤4cos(θ-\frac{π}{6})$的公共點,求$μ=\sqrt{3}x+y$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在△ABC中,角A,B,C的對邊分別為a,b,c,已知$\frac{a}{c}$cosB+$\frac{c}$cosA=$\frac{\sqrt{3}}{2cosC}$
( I)求∠C的大;
( II)求sinB-$\sqrt{3}$sinA的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果是$\frac{99}{199}$,則判斷框內(nèi)應(yīng)填的內(nèi)容是(  )
A.n≤97B.n≤98C.n≤99D.n≤100

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設(shè)點M,N為圓x2+y2=9上兩個動點,且|MN|=4$\sqrt{2}$,若點P為線段3x+4y+15=0(xy≥0)上一點,則|$\overrightarrow{PM}$+$\overrightarrow{PN}$|的最大值為( 。
A.4B.6C.8D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5. min(a,b)表示中的最小值.執(zhí)行如圖所示的程序框圖,若輸入的a,b值分別為6,4,則輸出的min(a,b)值是( 。
A.0B.1C.2D.4

查看答案和解析>>

同步練習冊答案