已知橢圓的離心率為,以原點(diǎn)為圓心、橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)設(shè),過點(diǎn)作與軸不重合的直線交橢圓于、兩點(diǎn),連結(jié)、分別交直線于、兩點(diǎn).試問直線、的斜率之積是否為定值,若是,求出該定值;若不是,請說明理由.
(1);(2)詳見解析.
解析試題分析:(1)由直線和圓相切,求,再由離心率,得,從而求,進(jìn)而求橢圓的方程;(2)要說明直線、的斜率之積是否為定值,關(guān)鍵是確定、兩點(diǎn)的坐標(biāo).首先設(shè)直線的方程,并與橢圓聯(lián)立,設(shè),利用三點(diǎn)共線確定、兩點(diǎn)的坐標(biāo)的坐標(biāo),再計算直線、的斜率之積,這時會涉及到,結(jié)合根與系數(shù)的關(guān)系,研究其值是否為定值即可.
試題解析:(1),故 4分
(2)設(shè),若直線與縱軸垂直,
則中有一點(diǎn)與重合,與題意不符,
故可設(shè)直線. 5分
將其與橢圓方程聯(lián)立,消去得:
6分
7分
由三點(diǎn)共線可知,,, 8分
同理可得 9分
10分
而 11分
所以
故直線、的斜率為定值. 13分
考點(diǎn):1、橢圓的標(biāo)準(zhǔn)方程和簡單幾何性質(zhì);2、直線和橢圓的位置關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)是拋物線上不同的兩點(diǎn),點(diǎn)在拋物線的準(zhǔn)線上,且焦點(diǎn)
到直線的距離為.
(I)求拋物線的方程;
(2)現(xiàn)給出以下三個論斷:①直線過焦點(diǎn);②直線過原點(diǎn);③直線平行軸.
請你以其中的兩個論斷作為條件,余下的一個論斷作為結(jié)論,寫出一個正確的命題,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的兩個焦點(diǎn)分別為,且點(diǎn)在橢圓C上,又.
(1)求焦點(diǎn)F2的軌跡的方程;
(2)若直線與曲線交于M、N兩點(diǎn),以MN為直徑的圓經(jīng)過原點(diǎn),求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線:和:的焦點(diǎn)分別為,交于兩點(diǎn)(為坐標(biāo)原點(diǎn)),且.
(1)求拋物線的方程;
(2)過點(diǎn)的直線交的下半部分于點(diǎn),交的左半部分于點(diǎn),點(diǎn)坐標(biāo)為,求△面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線的中心在原點(diǎn),離心率為2,一個焦點(diǎn)為F(-2,0).
(1)求雙曲線方程;
(2)設(shè)Q是雙曲線上一點(diǎn),且過點(diǎn)F,Q的直線l與y軸交于點(diǎn)M,若= 2,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的右焦點(diǎn),長軸的左、右端點(diǎn)分別為,且.
(1)求橢圓的方程;
(2)過焦點(diǎn)斜率為()的直線交橢圓于兩點(diǎn),弦的垂直平分線與軸相交于點(diǎn). 試問橢圓上是否存在點(diǎn)使得四邊形為菱形?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的準(zhǔn)線與x軸交于點(diǎn)M,過點(diǎn)M作圓的兩條切線,切點(diǎn)為A、B,.
(1)求拋物線E的方程;
(2)過拋物線E上的點(diǎn)N作圓C的兩條切線,切點(diǎn)分別為P、Q,若P,Q,O(O為原點(diǎn))三點(diǎn)共線,求點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定點(diǎn)與分別在軸、軸上的動點(diǎn)滿足:,動點(diǎn)滿足.
(1)求動點(diǎn)的軌跡的方程;
(2)設(shè)過點(diǎn)任作一直線與點(diǎn)的軌跡交于兩點(diǎn),直線與直線分別交于點(diǎn)(為坐標(biāo)原點(diǎn));
(i)試判斷直線與以為直徑的圓的位置關(guān)系;
(ii)探究是否為定值?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓經(jīng)過點(diǎn),其左、右頂點(diǎn)分別是、,左、右焦點(diǎn)分別是、,(異于、)是橢圓上的動點(diǎn),連接交直線于、兩點(diǎn),若成等比數(shù)列.
(1)求此橢圓的離心率;
(2)求證:以線段為直徑的圓過點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com