命題?x∈R,x2-x+3>0的否定是   
【答案】分析:根據(jù)全稱命題的否定要改成存在性命題的原則,可寫出原命題的否定
解答:解:原命題為:?x∈R,x2-x+3>0
∵原命題為全稱命題
∴其否定為存在性命題,且不等號須改變
∴原命題的否定為:?x∈R,x2-x+3≤0
故答案為:?x∈R,x2-x+3≤0
點評:本題考查命題的否定的寫法,常見的命題的三種形式寫否定:(1)“若A,則B”的否定為“若¬A,則¬B”;(2)全稱命題的否定為存在性命題,存在性命題的否定為全稱命題;(3)切命題的否定為或命題,或命題的否定為切命題.本題考查第二種形式,屬簡單題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列有關命題的說法正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題“?x∈R,x2+x>0”的否定是“
?x∈R,x2+x≤0
?x∈R,x2+x≤0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:其中真命題的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•天津模擬)給定下列四個命題:
①“x=
π
6
”是“sinx=
1
2
”的充分不必要條件;    
②若“p∨q”為真,則“p∧q”為真;
③命題“?x∈R,x2≥0”的否定是“?x∈R,x2≤0”;
④線性相關系數(shù)r的絕對值越接近于1,表明兩個隨機變量線性相關性越強;
其中為真命題的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題“?x∈R,x2+ax-4a<0”的否定是
 

查看答案和解析>>

同步練習冊答案