函數(shù)f(x)=lnx+ex的零點所在的區(qū)間是( 。
A、(0,
1
e
B、(
1
e
,1
C、(1,e)
D、(e,∞)
分析:由于函數(shù)在(0,+∞)單調(diào)遞增且連續(xù),根據(jù)零點判定定理只要滿足f(a)f(b)<0即為滿足條件的區(qū)間
解答:解:由于函數(shù)在(0,+∞)單調(diào)遞增且連續(xù)
f(
1
e2
)=e
1
e2
-2<0
,f(
1
e
)=ln
1
e
+e
1
e
=e
1
e
-1>0
,f(1)=e>0
故滿足條件的區(qū)間為(0,
1
e

故選A.
點評:本題主要考查了函數(shù)的零點的判定定理的應用,解題的關鍵、是要建議區(qū)間的端點的函數(shù)值的符號,而區(qū)間的端點不在定義域時,要注意在區(qū)間內(nèi)取合適的值進行檢驗,屬于基礎試題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-
ax

(Ⅰ)當a>0時,判斷f(x)在定義域上的單調(diào)性;
(Ⅱ)求f(x)在[1,e]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

7、函數(shù)f(x)=lnx-2x+3零點的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在(0,+∞)上的三個函數(shù)f(x)=lnx,g(x)=x2-af(x),h(x)=x-a
x
且g(x)在x=1處取得極值.求a的值及函數(shù)h(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
lnx+kex
(k為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),曲線y=f(x) 在點(1,f(1))處的切線與x軸平行.
(Ⅰ)求k的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設g(x)=(x2+x)f′(x),其中f′(x)是f(x)的導函數(shù).證明:對任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-x
(1)求f(x)的單調(diào)區(qū)間;
(2)若不等式af(x)≥x-
1
2
x2在x∈(0,+∞)內(nèi)恒成立,求實數(shù)a的取值范圍;
(3)n∈N+,求證:
1
ln2
+
1
ln3
+…+
1
ln(n+1)
n
n+1

查看答案和解析>>

同步練習冊答案