【題目】如圖,在中,,,D為線段BC(端點除外)上一動點.現(xiàn)將沿線段AD折起至,使二面角的大小為120°,則在點D的移動過程中,下列說法錯誤的是(

A.不存在點,使得

B.在平面上的投影軌跡是一段圓弧

C.與平面所成角的余弦值的取值范圍是

D.線段的最小值是

【答案】D

【解析】

過點BAD的垂線,AD于點E,連接,,過點BE的垂線,BE于點H,進(jìn)而證明平面ABC,在平面ABC上的投影為點H,連接CH,假設(shè),,即可判斷A;由,可判斷點E的軌跡,進(jìn)而判斷B;連接AH,則與平面ABC所成的角為,由相似可得,設(shè),可得的范圍,即可得的范圍,即可判斷C;設(shè),中利用余弦定理求解,即可判斷D.

過點BAD的垂線,交AD于點E,連接,,過點BE的垂線,交BE于點H,易知,則平面,所以為二面角的平面角的補角,即,所以,即HBE的中點,易知平面平面,又,所以平面ABC,所以在平面ABC上的投影為點H,

對于選項A,若,連接CH,則,而這是不可能成立的,故A正確;

對于選項B,因為,所以點E的軌跡為以AB為直徑的一段圓弧,又HBE的中點,所以點H的軌跡也為一段圓弧,故B正確;

對于選項C,連接AH,則與平面ABC所成的角為,設(shè),則,所以由,得,所以,所以,所以,所以,故C正確;

對于選項D,設(shè),則,,

,

其中,故,故D錯誤,

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,AB是圓Ox2y21的直徑,且點A在第一象限;圓O1(xa)2y2r2(a0)與圓O外離,線段AO1與圓O1交于點M,線段BM與圓O交于點N,且,則a的取值范圍為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橋牌是一種高雅、文明、競技性很強的智力性游戲.近年來,在中國橋牌協(xié)會橋牌進(jìn)校園活動的號召下,全國各地中小學(xué)紛紛積極加入到青少年橋牌推廣的大營中.為了了解學(xué)生對橋牌這項運動的興趣,某校從高一學(xué)生中隨機(jī)抽取了200名學(xué)生進(jìn)行調(diào)查,經(jīng)統(tǒng)計男生與女生的人數(shù)之比為23,男生中有50人對橋牌有興趣,女生中有20人對橋牌不感興趣.

1)完成2×2列聯(lián)表,并回答能否有的把握認(rèn)為該校高一學(xué)生對橋牌是否感興趣與性別有關(guān)?

感興趣

不感興趣

合計

50

——

——

——

20

——

合計

——

——

200

2)從被調(diào)查的對橋牌有興趣的學(xué)生中利用分層抽樣抽取6名學(xué)生,再從6名學(xué)生中抽取2名學(xué)生作為橋牌搭檔參加雙人賽.求抽到一名男生與一名女生的概率.

附:參考公式,其中

臨界值表:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為支援武漢的防疫,某醫(yī)院職工踴躍報名,其中報名的醫(yī)生18人,護(hù)士12人,醫(yī)技6人,根據(jù)需要,從中抽取一個容量為n的樣本參加救援隊,若采用系統(tǒng)抽樣和分層抽樣,均不用剔除人員.當(dāng)抽取n+1人時,若采用系統(tǒng)抽樣,則需剔除1個報名人員,則抽取的救援人員為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓過點,橢圓的離心率為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)如圖,設(shè)直線與圓相切與點,與橢圓相切于點,當(dāng)為何值時,線段長度最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的準(zhǔn)線經(jīng)過點,過的焦點作兩條互相垂直的直線,,直線交于,兩點,直線交于兩點,則下列結(jié)論正確的是(

A.B.的最小值為16

C.四邊形的面積的最小值為64D.若直線的斜率為2,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】任取一個自然數(shù),如果它是偶數(shù),我們就把它除以2,如果它是奇數(shù),我們就把它乘3再加上1,在這樣的變換下,我們就得到一個新的自然數(shù).如果反復(fù)使用這個變換,我們就會得到一串自然數(shù),最終我們都會陷在421這個循環(huán)中,這就是世界數(shù)學(xué)名題“3x+1問題”.如圖所示的程序框圖的算法思路源于此,執(zhí)行該程序框圖,若N6,則輸出的i=(

A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,的導(dǎo)函數(shù).

1)討論的單調(diào)性;

2)若,當(dāng)時,求證:有兩個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角ABC中,a2_______,求ABC的周長l的范圍.

在①(﹣cossin),(cos,sin),且,②cosA(2bc)=acosC,③f(x)=cosxcos(x),f(A)

注:這三個條件中任選一個,補充在上面問題中并對其進(jìn)行求解.

查看答案和解析>>

同步練習(xí)冊答案