(本小題滿分12分)某企業(yè)生產(chǎn)一種產(chǎn)品時,固定成本為5000元,而每生產(chǎn)100臺產(chǎn)品時直接消耗成本要增加2500元,市場對此商品年需求量為500臺,銷售的收入函數(shù)為R(x)=5xx2(萬元)(0≤x≤5),其中x是產(chǎn)品售出的數(shù)量(單位:百臺)

(1)把利潤表示為年產(chǎn)量的函數(shù);

(2)年產(chǎn)量多少時,企業(yè)所得的利潤最大?

(3)年產(chǎn)量多少時,企業(yè)才不虧本?

解析:(1)利潤y是指生產(chǎn)數(shù)量x的產(chǎn)品售出后的總收入R(x)與其總成本C(x)之差,由題意,當(dāng)x≤5時,產(chǎn)品能全部售出,當(dāng)x>5時,只能銷售500臺,所以

y= w.w.w.k.s.5.u.c.o.m 

(2)在0≤x≤5時,y=-x2+4.75x-0.5,當(dāng)x=-=4.75(百臺)時,ymax=10.78125(萬元),當(dāng)x>5(百臺)時,y<12-0.25×5=10.75(萬元),

所以當(dāng)生產(chǎn)475臺時,利潤最大.

(3)要使企業(yè)不虧本,即要求

解得5≥x≥4.75-≈0.1(百臺)或5<x<48(百臺)時,即企業(yè)年產(chǎn)量在10臺到4800臺之間時,企業(yè)不虧本.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習(xí)冊答案