已知函數(shù)f(x)=(2-a)(x-1)-2lnx.
(I)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間;
(II)若函數(shù)f(x)在(0,
1
2
)上無(wú)零點(diǎn),求a
的最小值;
(III)若0<n<m,求證:
m-n
lnm-lnn
<2m
分析:(I)代入a的值,寫(xiě)出函數(shù)的解析式,對(duì)函數(shù)求導(dǎo),使得導(dǎo)函數(shù)大于0,求出自變量的值,寫(xiě)出單調(diào)區(qū)間.
(II)根據(jù)函數(shù)無(wú)零點(diǎn),得到函數(shù)的導(dǎo)函數(shù)小于0在一個(gè)區(qū)間上不恒成立,得到函數(shù)在這個(gè)區(qū)間上沒(méi)有零點(diǎn),構(gòu)造新函數(shù),對(duì)函數(shù)求導(dǎo),利用求最值得方法求出函數(shù)的最小值.
(III)要證明不等式成立,由第(I)問(wèn)可知f(x)=(x-1)-2lnx在(0,1]上單調(diào)遞減,得到兩個(gè)自變量的函數(shù)值之間的關(guān)系,整理出結(jié)果.
解答:解:(I)當(dāng)a=1時(shí),f(x)=x-1-2lnx,則f′(x)=1-
2
x
,(1分)
由f'(x)>0,得x>2;
由f'(x)<0,得0<x<2.(3分)
故f(x)的單調(diào)減區(qū)間為(0,2],單調(diào)增區(qū)間為[2,+∞)(4分)
(II)因?yàn)?span id="hfhb9jv" class="MathJye">f(x)<0在區(qū)間(0,
1
2
)上恒成立不可能,
故要使函數(shù)f(x)在(0,
1
2
)
上無(wú)零點(diǎn),
只要對(duì)任意的x∈(0,
1
2
),f(x)>0
恒成立,
即對(duì)x∈(0,
1
2
),a>2-
2lnx
x-1
恒成立.(6分)
l(x)=2-
2lnx
x-1
,x∈(0,
1
2
)
,
l(x)=-
2
x
(x-1)-2lnx
(x-1)2
=
2lnx+
2
x
-2
(x-1)2
,(7分)
再令m(x)=2lnx+
2
x
-2,x∈(0,
1
2
),
則m′(x)=-
2
x2
+
2
x
=
-2(1-x)
x2
<0,
故m(x)在(0,
1
2
)上為減函數(shù)
,
于是m(x)>m(
1
2
)=2-2ln2>0,
從而,l(x)>0,于是l(x)在(0,
1
2
)上為增函數(shù),
所以l(x)<l(
1
2
)=2-4ln2,
故要使a>2-
2lnx
x-1
恒成立,只要a∈[2-4ln2,+∞),

綜上,若函數(shù)f(x)在(0,
1
2
)上無(wú)零點(diǎn)
,則a的最小值為2-4ln2.(9分)
(III)證明:由第(I)問(wèn)可知f(x)=(x-1)-2lnx在(0,1]上單調(diào)遞減.
0<
n
m
<1
,∴f(
n
m
)>f(1)
(12分)
(
n
m
-1)-2ln
n
m
>0?
n-m
m
>2(lnn-lnm)
m-n
m
<2(lnm-lnn)
,
m-n
lnm-lnn
<2m
(14分)
點(diǎn)評(píng):本小題主要考查函數(shù)與導(dǎo)數(shù)等知識(shí),考查恒成立問(wèn)題,化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及推理論證能力和運(yùn)算求解能力,本題解題的關(guān)鍵是最后一問(wèn),利用函數(shù)的單調(diào)性證明不等式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對(duì)稱(chēng),求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時(shí)f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對(duì)于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案