【題目】直線1通過(guò)點(diǎn)P(1,3)且與兩坐標(biāo)軸的正半軸交于A、B兩點(diǎn).
(1)直線1與兩坐標(biāo)軸所圍成的三角形面積為6,求直線1的方程;
(2)求OA+OB的最小值;
(3)求PAPB的最小值.

【答案】
(1)解:設(shè)直線l的方程為y﹣3=k(x﹣1)(k<0),

由x=0,得y=3﹣k,由y=0,得x= ,

=6,解得:k=﹣3


(2)解:OA+OB=3﹣k+1﹣ =4+(﹣k)+(﹣

當(dāng)且僅當(dāng)﹣k=﹣ ,即k=﹣ 時(shí)上式“=”成立


(3)解:設(shè)直線l的傾斜角為α,則它的方程為 (t為參數(shù)),

由A、B是坐標(biāo)軸上的點(diǎn),不妨設(shè)yA=0,xB=0,

∴0=3+tsinα,即PA=|t|=

0=3+tcosα,即PB=|t|=﹣

故PAPB= =﹣ .∵90°<α<180°,

∴當(dāng)2α=270°,即α=135°時(shí),PAPB有最小值.

∴直線方程為 (t為參數(shù)),化為普通方程即x+y﹣4=0


【解析】(1)設(shè)出直線l的方程為y﹣3=k(x﹣1)(k<0),求出直線在兩坐標(biāo)軸上的截距,代入三角形面積公式得答案;(2)寫出OA+OB的含有k的代數(shù)式,利用基本不等式求得最值;(3)設(shè)出直線l的參數(shù)方程,利用t的幾何意義求出PA,PB然后利用三角函數(shù)求最值.
【考點(diǎn)精析】關(guān)于本題考查的截距式方程,需要了解直線的截距式方程:已知直線軸的交點(diǎn)為A,與軸的交點(diǎn)為B,其中才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】要在墻上開(kāi)一個(gè)上部為半圓,下部為矩形的窗戶(如圖所示),在窗框總長(zhǎng)度為l的條件下,

(1)請(qǐng)寫出窗戶的面積S與圓的直徑x的函數(shù)關(guān)系;
(2)要使窗戶透光面積最大,窗戶應(yīng)具有怎樣的尺寸?并寫出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2+bx+c(a,b,c∈R且a≠0),若對(duì)任意實(shí)數(shù)x,不等式2x≤f(x) (x+1)2恒成立.
(1)求f(1)的值;
(2)求a的取值范圍;
(3)若函數(shù)g(x)=f(x)+2a|x﹣1|,x∈[﹣2,2]的最小值為﹣1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),任取,定義集合:

,點(diǎn), 滿足.

設(shè)分別表示集合中元素的最大值和最小值,記.則

(1) 若函數(shù),則=______;

(2)若函數(shù),則的最小正周期為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于集合,定義函數(shù)對(duì)于兩個(gè)集合,定義集合. 已知, .

(Ⅰ)寫出的值,并用列舉法寫出集合;

(Ⅱ)用表示有限集合所含元素的個(gè)數(shù),求的最小值;

(Ⅲ)有多少個(gè)集合對(duì),滿足,且?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2+2x﹣2﹣a(a≤0),
(1)若a=﹣1,求函數(shù)的零點(diǎn);
(2)若函數(shù)在區(qū)間(0,1]上恰有一個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=alnx+x2(a為實(shí)常數(shù)).
(1)當(dāng)a=﹣4時(shí),求函數(shù)f(x)在[1,e]上的最大值及相應(yīng)的x值;
(2)當(dāng)x∈[1,e]時(shí),討論方程f(x)=0根的個(gè)數(shù).
(3)若a>0,且對(duì)任意的x1 , x2∈[1,e],都有 ,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(x1 , f(x1)),B(x2 , f(x2))是函數(shù)f(x)=2sin(ωx+φ)(ω>0,﹣ <φ<0)圖象上的任意兩點(diǎn),且角φ的終邊經(jīng)過(guò)點(diǎn)P(1,﹣ ),若|f(x1)﹣f(x2)|=4時(shí),|x1﹣x2|的最小值為
(1)求函數(shù)f(x)的解析式;
(2)若方程3[f(x)]2﹣f(x)+m=0在x∈( )內(nèi)有兩個(gè)不同的解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,其中a∈R,且曲線y=f(x)在點(diǎn)(1,f(1))處的切線垂直于直線
(1)求實(shí)數(shù)a的值
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案