如圖:在三棱錐
中,已知點
、
、
分別為棱
、
、
的中點.
(1)求證:
∥平面
;
(2)若
,
,求證:平面
⊥平面
.
(1)關(guān)鍵證明:EF//AC.
(2) 由
,
可證出
,進而可證出平面
⊥平面
.
證明:(1)∵
是
的中位線,
∴
∥
.
又∵
平面
,
平面
,
∴
∥平面
.
(2)∵
,
,∴
.∵
,
,∴
.
又∵
平面
,
平面
,
,∴
平面
,
又∵
平面
,∴平面
⊥平面
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
把正方形
以邊
所在直線為軸旋轉(zhuǎn)
到正方形
,其中
分別為
的中點.
(1)求證:
∥平面
;
(2)求證:
平面
;
(3)求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知:
求證:
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)
、
是兩條不同的直線,
、
是兩個不同的平面. 考察下列命題,其中真命題是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在正方體ABCD-A
1B
1C
1D
1中,求證:AC
1BD.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)
、
是兩條不同的直線,
是一個平面,則下列命題正確的是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分14分)如圖,在直三棱柱
中,
,
分別是
的中點,且
.
(1)求證:
;
(2)求證:平面
平面
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在四棱錐P—ABCD中,底面ABCD是邊長為4的菱形,且
,菱形ABCD的兩條對角線的交點為0,PA=PC,PB=PD,且PO=3.點E是線段PA的中點,連接EO、EB、EC.
(I)證明:直線OE//平面PBC;
(II)求二面角E-BC-D的大小
查看答案和解析>>