如圖所示,已知A、B、C是平面α外不共線的三點(diǎn),并且直線AB、BC、AC分別交α于P、Q、R三點(diǎn),求證:P、Q、R三點(diǎn)共線.

答案:
解析:

  欲證P、Q、R三點(diǎn)共線,只需證P、Q、R都在面ABC和平面α的交線上,即只需證P、Q、R為兩個(gè)平面的公共點(diǎn).

  證明點(diǎn)共線問(wèn)題,一般轉(zhuǎn)化為證明這些點(diǎn)是某兩平面的公共點(diǎn),這樣可據(jù)公理2證明這些點(diǎn)在兩平面的交線上.

  證明:∵AB∩α=P,AB面ABC,

  ∴P∈面ABC,P∈α.

  ∴P在平面ABC與平面α的交線上.

  同理,可證Q、R也在平面ABC與α的交線上.

  ∴P、Q、R三點(diǎn)共線.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知A,B,C是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
上的三點(diǎn),其中點(diǎn)A的坐標(biāo)為(2
3
,0),BC
過(guò)橢圓的中心O,且AC⊥BC,|BC|=2|AC|.
(Ⅰ)求點(diǎn)C的坐標(biāo)及橢圓E的方程;
(Ⅱ)若橢圓E上存在兩點(diǎn)P,Q,使得∠PCQ的平分線總是垂直于x軸,試判斷向量
PQ
AB
是否共線,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知A、B、C是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)上的三點(diǎn),,BC過(guò)橢圓的中心O,且AC⊥BC,|BC|=2|AC|.則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知A、B、C是長(zhǎng)軸長(zhǎng)為4的橢圓上的三點(diǎn),點(diǎn)A是長(zhǎng)軸的一個(gè)端點(diǎn),BC過(guò)橢圓中心O,且
AC
BC
=0
,|BC|=2|AC|.
(I)建立適當(dāng)?shù)淖鴺?biāo)系,求橢圓方程;
(II)如果橢圓上有兩點(diǎn)P、Q,使∠PCQ的平分線垂直于AO,證明:存在實(shí)數(shù)λ,使
PQ
AB

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知A,B,C是圓O上三個(gè)點(diǎn),AB弧等于BC弧,D為弧AC上一點(diǎn),過(guò)點(diǎn)A做圓O的切線交BD延長(zhǎng)線于E
(1)求證:AB平分∠CAE;
(2)若AD•BE=2
6
,∠ADE=30°
,求△ABE的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知A、B、C是橢圓E:=1(a>b>0)上的三點(diǎn),其中點(diǎn)  

A的坐標(biāo)為(2,0),BC過(guò)橢圓的中心O,且AC⊥BC,|BC|=2|AC|.

(1)求點(diǎn)C的坐標(biāo)及橢圓E的方程;

(2)若橢圓E上存在兩點(diǎn)P、Q,使得∠PCQ的平分線總是垂直于x軸,試判斷向量是否共線,并給出證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案