11.f(x)=x3+ax+$\frac{1}{x}$在($\frac{1}{2}$,+∞)是增函數(shù),求a取值范圍( 。
A.(-$\frac{1}{2}$,+∞)B.[-$\frac{1}{2}$,+∞)C.[$\frac{13}{4}$,+∞)D.($\frac{13}{4}$,+∞)

分析 求出原函數(shù)的導(dǎo)函數(shù),再由導(dǎo)函數(shù)在($\frac{1}{2}$,+∞)上大于等于0恒成立,分離參數(shù)a可得a≥$\frac{1}{{x}^{2}}-3{x}^{2}$在($\frac{1}{2}$,+∞)上恒成立.令g(x)=$\frac{1}{{x}^{2}}-3{x}^{2}$,利用導(dǎo)數(shù)求其范圍后可得a的取值范圍.

解答 解:由f(x)=x3+ax+$\frac{1}{x}$,得f′(x)=3x2+a-$\frac{1}{{x}^{2}}$,
∵f(x)=x3+ax+$\frac{1}{x}$在($\frac{1}{2}$,+∞)是增函數(shù),
∴f′(x)=3x2+a-$\frac{1}{{x}^{2}}$≥0在($\frac{1}{2}$,+∞)上恒成立,
即a≥$\frac{1}{{x}^{2}}-3{x}^{2}$在($\frac{1}{2}$,+∞)上恒成立.
令g(x)=$\frac{1}{{x}^{2}}-3{x}^{2}$,
則g′(x)=$\frac{-2-6{x}^{4}}{{x}^{3}}$<0在($\frac{1}{2}$,+∞)上恒成立.
∴g(x)在($\frac{1}{2}$,+∞)上為減函數(shù),
∴g(x)<g($\frac{1}{2}$)=$\frac{13}{4}$.
則a$≥\frac{13}{4}$.
∴a的取值范圍是[$\frac{13}{4},+∞$).
故選:C.

點(diǎn)評 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,訓(xùn)練了原函數(shù)的單調(diào)性與導(dǎo)函數(shù)符號間的關(guān)系的應(yīng)用,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,向量$\overrightarrow{m}$=(c+a,b),$\overrightarrow{n}$=(c-a,b-c),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求角A的大;
(2)若a=3,求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,正方形ABCD所在平面與三角形CDE所在平面相交于CD,AE⊥平面CDE,且AE=1,AB=2.  
(1)求證:AB⊥平面ADE;
(2)求點(diǎn)A到平面BDE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=xlnx,g(x)=ex,其中a為常數(shù),e=2,718…
(1)求函數(shù)f(x)的單調(diào)區(qū)間與極值;
(2)若存在x使不等式$\frac{x-m}{g(x)}>\sqrt{x}$成立,求實(shí)數(shù)m的取值范圍;
(3)若x1,x2∈($\frac{1}{e}$,1),x1+x2<1,求證:x1x2<(x1+x24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列說法正確的是( 。
A.若$\vec a•\vec b=\vec b•\vec c$,則$\vec a=\vec c$B.與向量$\vec a$共線的單位向量為$±\frac{\vec a}{{|{\vec a}|}}$
C.若$\vec a∥\vec b$,$\vec b∥\vec c$,則$\vec a∥\vec c$D.若$\vec a∥\vec b$,則存在唯一實(shí)數(shù)λ使得$\vec a=λ\vec b$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知x,y滿足約束條件$\left\{\begin{array}{l}x+y-2≤0\\ x-2y-2≤0\\ 2x-y+2≥0\end{array}\right.$,若z=3x+y,則z的最小值為-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,角A,B,C的對邊分別是a,b,c,且$\sqrt{3}$acosC=(2b-$\sqrt{3}$c)cosA.
(1)求角A的大;
(2)已知等差數(shù)列{an}的公差不為零,若a1sinA=1,且a2,a4,a8成等比數(shù)列,求{$\frac{4}{{a}_{n}{a}_{n+1}}$}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知向量$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為120°,且$|\overrightarrow{AB}|=2$,$|\overrightarrow{AC}|=4$,若$\overrightarrow{AP}=\overrightarrow{AB}+λ\overrightarrow{AC}$且$\overrightarrow{AP}⊥\overrightarrow{BC}$,則實(shí)數(shù)λ的值為( 。
A.$\frac{4}{5}$B.$-\frac{4}{5}$C.$\frac{2}{5}$D.$-\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.平行四邊形ABCD中,AB=AD=2,$\overrightarrow{AB}$•$\overrightarrow{AD}$=-2,$\overrightarrow{DM}$+$\overrightarrow{CM}$=$\overrightarrow{0}$,則$\overrightarrow{AB}$•$\overrightarrow{BM}$的值為( 。
A.-4B.4C.-2D.2

查看答案和解析>>

同步練習(xí)冊答案