通過隨機(jī)詢問110名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:

 

 男

總計(jì)

愛好

40

20

60

不愛好

20

30

50

總計(jì)

60

50

110

 算得,

附表: 

0.050

0.010

0.001

k

3.841

6.635

10.828

參照附表,得到的正確結(jié)論是(    )

A.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

B.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”

C.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為 “愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

D.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為 “愛好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”

 

【答案】

C

【解析】

試題分析:根據(jù)表中數(shù)據(jù)可知,所以應(yīng)該是在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為 “愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”.

考點(diǎn):本小題主要考查獨(dú)立性檢驗(yàn)的應(yīng)用.

點(diǎn)評(píng):求出的值后,要參照附表得出結(jié)論,要注意結(jié)論的準(zhǔn)確性.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

通過隨機(jī)詢問110名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:
 男 總計(jì)
愛好 40 20 60
不愛好 20 30 50
總計(jì) 60 50 110
k2=
n(ad-bc)2
(a+d)(c+d)(a+c)(b+d)
算得,k2=
110×(40×30-20×20)2
60×50×60×50
≈7.8

附表:
p(k2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828
參照附表,得到的正確結(jié)論是(  )
A、有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B、有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
C、在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D、在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別五關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

通過隨機(jī)詢問110名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),發(fā)現(xiàn)60名男生中有40人愛好這項(xiàng)運(yùn)動(dòng),50名女生中有20人愛好這項(xiàng)運(yùn)動(dòng),分析愛好此項(xiàng)運(yùn)動(dòng)是否與性別有關(guān)?有多大把握?
P(k2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

通過隨機(jī)詢問110名不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:
總計(jì)
愛好 40 20 60
不愛好 20 30 50
總計(jì) 60 50 110
為了判斷愛好該項(xiàng)運(yùn)動(dòng)是否與性別有關(guān),由表中的數(shù)據(jù)此算得k2≈7.8,因?yàn)镻(k2≥6.635)≈0.01,所以判定愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān),那么這種判斷出錯(cuò)的可能性為
1%
1%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

通過隨機(jī)詢問110名性別不同的行人,對(duì)過馬路是愿意走斑線還是愿意走人行天橋進(jìn)行抽樣調(diào)查,得到如下的列表:
總計(jì)
走天橋 40 20 60
走斑馬線 20 30 50
總計(jì) 60 50 110
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d
)
,算得K2=
110×(40×30-20×20)2
60×50×60×50
≈7.8

附表:
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828
參照附表,得到的正確結(jié)論是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•韶關(guān)二模)以下四個(gè)命題
①在一次試卷分析中,從每個(gè)試室中抽取第5號(hào)考生的成績(jī)進(jìn)行統(tǒng)計(jì),是簡(jiǎn)單隨機(jī)抽樣;
②樣本數(shù)據(jù):3,4,5,6,7的方差為2;
③對(duì)于相關(guān)系數(shù)r,|r|越接近1,則線性相關(guān)程度越強(qiáng);
④通過隨機(jī)詢問110名性別不同的行人,對(duì)過馬路是愿意走斑馬線還是愿意走人行天橋進(jìn)行抽樣調(diào)查,得到如下列聯(lián)表:

總計(jì)
走天橋 40 20 60
走斑馬線 20 30 50
總計(jì) 60 50 110
附表:
P(K2≥k) 0.05 0.010 0.001
k 3.841 6.635 10.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
可得,k2=
110×(40×30-20×20)
60×50×60×50
=7.8

則有99%以上的把握認(rèn)為“選擇過馬路方式與性別有關(guān)”.其中正確的命題序號(hào)是
②③④
②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案