已知平面∥,直線l,點(diǎn)P∈l,平面、間的距離為5,則在內(nèi)到點(diǎn)P的距離為13且到直線l的距離為的點(diǎn)的軌跡是( )
A.一個(gè)圓 | B.四個(gè)點(diǎn) | C.兩條直線 | D.雙曲線的一支 |
B
解析考點(diǎn):拋物線的定義.
專題:計(jì)算題.
分析:如圖所示:作PH⊥β,H為垂足,過H 作直線m∥l,則m是l在平面β內(nèi)的攝影.作HA⊥m,且HA=PH=5,則由三垂線定理可得 PA⊥l,作AM∥m,且 AM= ,有勾股定理可得MP=13,故M在所求的軌跡上.據(jù)點(diǎn)M在面β內(nèi),可得滿足條件的M共有4個(gè).
解答:解:如圖所示:作PH⊥β,H為垂足,則PH=5.
過H 作直線m∥l,則m是l在平面β內(nèi)的攝影.
作HA⊥m,且HA=PH=5,
則由三垂線定理可得 PA⊥m,∴PA⊥l,故 PA=5.
作AM∥m,且 AM=,有勾股定理可得MP=13,故M在所求的軌跡上.又點(diǎn)M在面β內(nèi),
故滿足條件的M共有4個(gè),
故選 B.
點(diǎn)評(píng):本題考查勾股定理、三垂線定理的應(yīng)用,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,確定點(diǎn)M的位置,是解題的難點(diǎn)和關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知雙曲線的方程為,過左焦點(diǎn)F1作斜率為的直線交雙曲線的右支于點(diǎn)P,且軸平分線段F1P,則雙曲線的離心率是 ( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
、分別是雙曲線的左、右焦點(diǎn),是其右頂點(diǎn),過作軸的垂線與雙曲線的一個(gè)交點(diǎn)為,是,則雙曲線的離心率是
A. | B. | C.2 | D.3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
過拋物線 y2 =" 4x" 的焦點(diǎn)作直線交拋物線于A(x1, y1)B(x2, y2)兩點(diǎn),如果=6,
那么=( )
A. 6 | B. 8 | C.9 | D.10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
若橢圓的兩個(gè)焦點(diǎn)到一條準(zhǔn)線的距離之比為3:2,則橢圓的離心率是( )
A. B . C. D
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)雙曲線的離心率為,且它的一條準(zhǔn)線與拋物線的準(zhǔn)線重合,則此雙曲線的方程為 ( )
A. | B. | C. | D. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com