7.已知拋物線C:y2=4x及支線l:x-y+4=0,P是拋物線C上的動(dòng)點(diǎn),記P到y(tǒng)軸的距離為d1,p到l的距離為d2,則d1+d2的最小值為$\frac{5\sqrt{2}}{2}$-1.

分析 連接PF,過(guò)點(diǎn)P作PA⊥l于點(diǎn)A,作PB⊥y軸于點(diǎn)B,PB的延長(zhǎng)線交準(zhǔn)線x=-1于點(diǎn)C.由拋物線的定義,得到d1+d2=(PA+PF)-1,再由平面幾何知識(shí)可得當(dāng)P、A、F三點(diǎn)共線時(shí),PA+PF有最小值,因此算出F到直線l的距離,即可得到d1+d2的最小值.

解答 解:如圖,過(guò)點(diǎn)P作PA⊥l于點(diǎn)A,作PB⊥y軸于點(diǎn)B,PB的延長(zhǎng)線交準(zhǔn)線x=-1于點(diǎn)C,
連接PF,根據(jù)拋物線的定義得PA+PC=PA+PF,
∵P到y(tǒng)軸的距離為d1,P到直線l的距離為d2,
∴d1+d2=PA+PB=(PA+PC)-1=(PA+PF)-1,
根據(jù)平面幾何知識(shí),可得當(dāng)P、A、F三點(diǎn)共線時(shí),PA+PF有最小值,
∴F(1,0)到直線l:x-y+4=0的距離為點(diǎn)P到準(zhǔn)線的距離等于$\frac{|1-0+4|}{\sqrt{2}}$=$\frac{5\sqrt{2}}{2}$,
∴PA+PF的最小值是$\frac{5\sqrt{2}}{2}$,
由此可得d1+d2的最小值為$\frac{5\sqrt{2}}{2}$-1,
故答案為:$\frac{5\sqrt{2}}{2}$-1.

點(diǎn)評(píng) 本題給出拋物線和直線l,求拋物線上一點(diǎn)P到y(tǒng)軸距離與直線l距離之和的最小值,著重考查了點(diǎn)到直線的距離公式、拋物線的定義和簡(jiǎn)單幾何性質(zhì)等知識(shí),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{1}{2}$,且經(jīng)過(guò)點(diǎn)$P(1,\frac{3}{2})$.
(1)求橢圓C的方程;
(2)設(shè)F是橢圓C的右焦點(diǎn),M為橢圓上一點(diǎn),以M為圓心,MF為半徑作圓M.問(wèn)點(diǎn)M的橫坐標(biāo)在什么范圍內(nèi)取值時(shí),圓M與y軸有兩個(gè)交點(diǎn)?
(3)設(shè)圓M與y軸交于D、E兩點(diǎn),求弦長(zhǎng)DE的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.把“二進(jìn)制”數(shù)1011001化為“十進(jìn)制”數(shù)是87.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.不等式2x2-3x+1≥0的解集是$({-∞,\frac{1}{2}}]∪[{1,+∞})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.己知函數(shù)$f(x)=lnx-\frac{1}{2}a{x^2}+x,a∈R$.
(1)若f(1)=0,求函數(shù) f(x)的單調(diào)遞減區(qū)間;
(2)若關(guān)于x的不等式f(x)≤ax-1恒成立,求整數(shù)a的最小值;
(3)若 a=-2,正實(shí)數(shù) x1,x2滿足 f(x1)+f(x2)+x1x2=0,證明 ${x_1}+{x_2}≥\frac{{\sqrt{5}-1}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.函數(shù)f(x)=2sin(ωx+φ)(ω>0,且$|φ|<\frac{π}{2})$的部分圖象如圖所示,則f(0)的值為$-\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.三角形ABC中,角A、B、C所對(duì)邊分別為a,b,c,且a2+c2=b2+ac.
(1)若cosA=$\frac{1}{3}$,求sinC的值;
(2)若b=$\sqrt{7}$,a=3c,求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在三棱錐A-BCD中,AB=2$\sqrt{6}$,△ACD和△BCD均是邊長(zhǎng)為4的等邊三角形,則三棱錐外接球的表面積為$\frac{80π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若$cosB=\frac{a}{c}$,則△ABC的形狀為( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.不確定

查看答案和解析>>

同步練習(xí)冊(cè)答案