函數(shù)f(x)=cos(2x+
π
4
)的最小正周期是( 。
A、
π
2
B、π
C、2π
D、4π
考點:三角函數(shù)的周期性及其求法
專題:三角函數(shù)的圖像與性質(zhì)
分析:由題意得ω=2,再代入復合三角函數(shù)的周期公式T=
|ω|
求解.
解答: 解:根據(jù)復合三角函數(shù)的周期公式T=
|ω|
得,
函數(shù)f(x)=cos(2x+
π
4
)的最小正周期是π,
故選:B.
點評:本題考查了三角函數(shù)的周期性,以及復合三角函數(shù)的周期公式T=
|ω|
應用,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,2
3
sin2
A+B
2
=sinC+
3
+1.
(1)求角C的大;
(2)若a=2
3
,c=2,求b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設雙曲線C的兩個焦點為(-
2
,0),(
2
,0),一個頂點是(1,0),則C的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,某飛行器在4千米高空飛行,從距著陸點A的水平距離10千米處開始下降,已知下降飛行軌跡為某三次函數(shù)圖象的一部分,則該函數(shù)的解析式為( 。
A、y=
1
125
x3
-
3
5
x
B、y=
2
125
x3-
4
5
x
C、y=
3
125
x3-x
D、y=-
3
125
x3+
1
5
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,點O為線段BD的中點,設點P在線段CC1上,直線OP與平面A1BD所成的角為α,則sinα的取值范圍是( 。
A、[
3
3
,1]
B、[
6
3
,1]
C、[
6
3
,
2
2
3
]
D、[
2
2
3
,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)z=(3-2i)i的共軛復數(shù)
.
z
等于( 。
A、-2-3iB、-2+3i
C、2-3iD、2+3i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U=R,A={x|x≤0},B={x|x≥1},則集合∁U(A∪B)=( 。
A、{x|x≥0}
B、{x|x≤1}
C、{x|0≤x≤1}
D、{x|0<x<1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設命題p:?x∈R,x2+1>0,則¬p為(  )
A、?x0∈R,x02+1>0
B、?x0∈R,x02+1≤0
C、?x0∈R,x02+1<0
D、?x∈R,x2+1≤0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax3-3x.
(1)當a=1,求函數(shù)f(x)的極值;
(2)若函數(shù)f(x)在區(qū)間[1,2]上的最小值為4,求實數(shù)a的值.

查看答案和解析>>

同步練習冊答案