【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;

(2)為曲線上任一點,過點作曲線的切線為切點),求的最小值.

【答案】(1);(2).

【解析】試題分析

(1)將參數(shù)方程消去參數(shù)可得普通方程,將

代入極坐標(biāo)方程可得直角坐標(biāo)方程。(2)由圓的切線長公式可得,所以當(dāng)最小時, 取得最小值,再由點到直線的距離公式得,所以.

試題解析

(1)將方程消去參數(shù)

故曲線的普通方程為。

因為,

所以

代入上式,

,

所以曲線的直角坐標(biāo)方程為。

(2)由(1)知,曲線為圓心,半徑為的圓,

,

所以當(dāng)且僅當(dāng)取得最小值時, 取得最小值,又

所以.

的最小值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于數(shù)列有下列命題:
①數(shù)列{an}的前n項和為Sn , 且Sn=an﹣1(a∈R),則{an}為等差或等比數(shù)列;
②數(shù)列{an}為等差數(shù)列,且公差不為零,則數(shù)列{an}中不會有am=an(m≠n),
③一個等差數(shù)列{an}中,若存在ak+1>ak>0(k∈N*),則對于任意自然數(shù)n>k,都有an>0;
④一個等比數(shù)列{an}中,若存在自然數(shù)k,使akak+1<0,則對于任意n∈N* , 都有anan+1<0,
其中正確命題的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某機(jī)床廠今年初用98萬元購進(jìn)一臺數(shù)控機(jī)床,并立即投入使用,計劃第一年維修、保養(yǎng)費(fèi)用12萬元,從第二年開始,每年的維修、保養(yǎng)修費(fèi)用比上一年增加4萬元,該機(jī)床使用后,每年的總收入為50萬元,設(shè)使用x年后數(shù)控機(jī)床的盈利總額y元.
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)從第幾年開始,該機(jī)床開始盈利?
(3)使用若干年后,對機(jī)床的處理有兩種方案:①當(dāng)年平均盈利額達(dá)到最大值時,以30萬元價格處理該機(jī)床;②當(dāng)盈利額達(dá)到最大值時,以12萬元價格處理該機(jī)床.問哪種方案處理較為合理?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)二次函數(shù)f(x)=x2+bx+c(b,c∈R),f(1)=0,且1≤x≤3時,f(x)≤0恒成立,f(x)是區(qū)間[2,+∞)上的增函數(shù).函數(shù)f(x)的解析式是;若|f(m)|=|f(n)|,且m<n<2,u=m+n,u的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人在如圖所示的直角邊長為4米的三角形地塊的每個格點(指縱、橫直線的交叉點以及三角形的頂點)處都種了一株相同品種的作物.根據(jù)歷年的種植經(jīng)驗,一株該種作物的年收獲量Y(單位:kg)與它的相近作物株數(shù)X之間的關(guān)系如下表所示:

X

1

2

3

4

Y

51

48

45

42

這里,兩株作物相近是指它們之間的直線距離不超過1米.

(1)從三角形地塊的內(nèi)部和邊界上分別隨機(jī)選取一株作物,求它們恰好相近的概率;

(2)從所種作物中隨機(jī)選取一株,求它的年收獲量的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,AB⊥BC側(cè)面PAB⊥底面ABCD,PA=AD=AB=2,BC=4.

(1)若PB中點為E.求證:AE∥平面PCD;
(2)若∠PAB=60°,求直線BD與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某花店每天以每枝5元的價格從農(nóng)場購進(jìn)若干枝玫瑰花,然后以每枝10元的價格出售,如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進(jìn)16枝玫瑰花,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

日需求量n

14

15

16

17

18

19

20

頻數(shù)

10

20

16

16

15

13

10

以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)若花店一天購進(jìn)16枝玫瑰花,X表示當(dāng)天的利潤(單位:元),求X的分布列,數(shù)學(xué)期望及方差;
(ii)若花店計劃一天購進(jìn)16枝或17枝玫瑰花,你認(rèn)為應(yīng)購進(jìn)16枝還是17枝?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等比數(shù)列{an}的各項均為正數(shù),且2a1+3a2=1,a32=9a2a6
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=|10+2log3an|,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,

(1)求證:AD1⊥平面CDA1B1;
(2)求直線AD1與直線BD所成的角.

查看答案和解析>>

同步練習(xí)冊答案