已知各項(xiàng)均為正數(shù)的數(shù)列滿足
,且
,其中
.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列滿足
是否存在正整數(shù)m、n(1<m<n),使得
成等比數(shù)列?若存在,求出所有的m、n的值,若不存在,請(qǐng)說明理由。
(Ⅰ)數(shù)列的通項(xiàng)公式為
;(Ⅱ)存在,
,
.
解析試題分析:(Ⅰ)求數(shù)列的通項(xiàng)公式,首先須知道數(shù)列
的特征,由題意
可得,
,由于各項(xiàng)均為正數(shù),故有
?即
,這樣得到數(shù)列
是公比為
的等比數(shù)列,由
可求出
,從而可得數(shù)列
的通項(xiàng)公式;(Ⅱ)設(shè)數(shù)列
滿足
是否存在正整數(shù)
,使得
成等比數(shù)列,首先求出數(shù)列
的通項(xiàng)公式,
,然后假設(shè)存在正整數(shù)
,使得
成等比數(shù)列,則
,整理可得
,只要
即可,解不等式求出
的范圍,看是否有正整數(shù),從而的結(jié)論.
試題解析:(Ⅰ)??因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/bb/1/1hw5x2.png" style="vertical-align:middle;" />?即?
又?所以有
?即
所以數(shù)列是公比為
的等比數(shù)列?
由得
?解得
。
從而,數(shù)列的通項(xiàng)公式為
。 6分
(II)=
,若
成等比數(shù)列,則
,
即.
由,可得
,
所以,解得:
。
又,且
,所以
,此時(shí)
.
故當(dāng)且僅當(dāng),
?使得
成等比數(shù)列。 13分
考點(diǎn):等比數(shù)列的定義,及通項(xiàng)公式,探索性命題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{Sn}的前n項(xiàng)和為Tn,滿足Tn=2Sn-n2,n∈N*.
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{Sn}的前n項(xiàng)和為Tn,滿足Tn=2Sn-n2,n∈N*.
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
各項(xiàng)均為正數(shù)的等比數(shù)列中,
(Ⅰ)求數(shù)列通項(xiàng)公式;
(Ⅱ)若等差數(shù)列滿足
,求數(shù)列
的前
項(xiàng)和
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列{}的前n項(xiàng)和為
,
.
(Ⅰ)設(shè),證明:數(shù)列
是等比數(shù)列;
(Ⅱ)求數(shù)列的前
項(xiàng)和
;
(Ⅲ)若,
.求不超過
的最大整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)若是常數(shù),問當(dāng)
滿足什么條件時(shí),函數(shù)
有最大值,并求出
取最大值時(shí)
的值;
(2)是否存在實(shí)數(shù)對(duì)同時(shí)滿足條件:(甲)
取最大值時(shí)
的值與
取最小值的
值相同,(乙)
?
(3)把滿足條件(甲)的實(shí)數(shù)對(duì)的集合記作A,設(shè)
,求使
的
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),設(shè)曲線
在點(diǎn)
處的切線與
軸的交點(diǎn)為
,其中
為正實(shí)數(shù).
(1)用表示
;
(2),若
,試證明數(shù)列
為等比數(shù)列,并求數(shù)列
的通項(xiàng)公式;
(3)若數(shù)列的前
項(xiàng)和
,記數(shù)列
的前
項(xiàng)和
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的首項(xiàng)
,公差
.且
分別是等比數(shù)列
的
.
(1)求數(shù)列與
的通項(xiàng)公式;
(2)設(shè)數(shù)列對(duì)任意自然數(shù)
均有
成立,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的前
項(xiàng)和為
,
.
(Ⅰ)設(shè),證明:數(shù)列
是等比數(shù)列;
(Ⅱ)求數(shù)列的前
項(xiàng)和
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com