某工廠利用輻射對食品進行滅菌消毒,現(xiàn)準備在該廠附近建一職工宿舍,并對宿舍進行防輻射處理,建房防輻射材料的選用與宿舍到工廠距離有關(guān).若建造宿舍的所有費用p(萬元)和宿舍與工廠的距離x(km)的關(guān)系為:,若距離為1km時,測算宿舍建造費用為100萬元.為了交通方便,工廠與宿舍之間還要修一條道路,已知購置修路設(shè)備需5萬元,鋪設(shè)路面每公里成本為6萬元,設(shè)f(x)為建造宿舍與修路費用之和.
(I)求f(x)的表達式;
(II)宿舍應(yīng)建在離工廠多遠處,可使總費用f(x)最小,并求最小值.
【答案】分析:(Ⅰ)根據(jù)距離為1km時,測算宿舍建造費用為100萬元,可求k的值,由此,可得f(x)的表達式;
(Ⅱ),利用基本不等式,即可求出函數(shù)的最小值.
解答:解:(Ⅰ)根據(jù)題意,距離為1km時,測算宿舍建造費用為100萬元
,∴k=800(3分)
 (7分)
(Ⅱ)∵ (11分)
當且僅當即x=5時f(x)min=75. (14分)
答:宿舍應(yīng)建在離廠5km處可使總費用f(x)最小為75萬元. (15分)
點評:本題考查函數(shù)模型的構(gòu)建,考查利用基本不等式求函數(shù)的最值,注意基本不等式的使用條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某工廠利用輻射對食品進行滅菌消毒,現(xiàn)準備在該廠附近建一職工宿舍,并對宿舍進行防輻射處理,建房防輻射材料的選用與宿舍到工廠距離有關(guān).若建造宿舍的所有費用p(萬元)和宿舍與工廠的距離x(km)的關(guān)系為:p=
k3x+5
(0≤x≤8)
,若距離為1km時,測算宿舍建造費用為100萬元.為了交通方便,工廠與宿舍之間還要修一條道路,已知購置修路設(shè)備需5萬元,鋪設(shè)路面每公里成本為6萬元,設(shè)f(x)為建造宿舍與修路費用之和.
(I)求f(x)的表達式;
(II)宿舍應(yīng)建在離工廠多遠處,可使總費用f(x)最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某工廠利用輻射對食品進行滅菌消毒,現(xiàn)準備在該廠附近建一職工宿舍,并對宿舍進行防輻射處理,建房防輻射材料的選用與宿舍到工廠距離有關(guān).若建造宿舍的所有費用p(萬元)和宿舍與工廠的距離x(km)的關(guān)系為:p=
k
3x+5
(0≤x≤8)
,若距離為1km時,測算宿舍建造費用為100萬元.為了交通方便,工廠與宿舍之間還要修一條道路,已知購置修路設(shè)備需5萬元,鋪設(shè)路面每公里成本為6萬元,設(shè)f(x)為建造宿舍與修路費用之和.
(I)求f(x)的表達式;
(II)宿舍應(yīng)建在離工廠多遠處,可使總費用f(x)最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省揚州市寶應(yīng)縣曹甸高級中學(xué)高三(上)第二次效益檢測數(shù)學(xué)試卷(解析版) 題型:解答題

某工廠利用輻射對食品進行滅菌消毒,現(xiàn)準備在該廠附近建一職工宿舍,并對宿舍進行防輻射處理,建房防輻射材料的選用與宿舍到工廠距離有關(guān).若建造宿舍的所有費用p(萬元)和宿舍與工廠的距離x(km)的關(guān)系為:,若距離為1km時,測算宿舍建造費用為100萬元.為了交通方便,工廠與宿舍之間還要修一條道路,已知購置修路設(shè)備需5萬元,鋪設(shè)路面每公里成本為6萬元,設(shè)f(x)為建造宿舍與修路費用之和.
(I)求f(x)的表達式;
(II)宿舍應(yīng)建在離工廠多遠處,可使總費用f(x)最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省揚州市寶應(yīng)縣曹甸高級中學(xué)高三(上)第二次效益檢測數(shù)學(xué)試卷(解析版) 題型:解答題

某工廠利用輻射對食品進行滅菌消毒,現(xiàn)準備在該廠附近建一職工宿舍,并對宿舍進行防輻射處理,建房防輻射材料的選用與宿舍到工廠距離有關(guān).若建造宿舍的所有費用p(萬元)和宿舍與工廠的距離x(km)的關(guān)系為:,若距離為1km時,測算宿舍建造費用為100萬元.為了交通方便,工廠與宿舍之間還要修一條道路,已知購置修路設(shè)備需5萬元,鋪設(shè)路面每公里成本為6萬元,設(shè)f(x)為建造宿舍與修路費用之和.
(I)求f(x)的表達式;
(II)宿舍應(yīng)建在離工廠多遠處,可使總費用f(x)最小,并求最小值.

查看答案和解析>>

同步練習(xí)冊答案